Fibre Multi-Object Spectrograph (FMOS) for the Subaru Telescope

Fibre Multi-Object Spectrograph (FMOS) is the first near-infrared instrument with a wide field of view capable of acquiring spectra simultaneously from up to 400 objects. It has been developed as a common-use instrument for the F/2 prime-focus of the Subaru Telescope. The field coverage of 30' diameter is achieved using a new 3-element corrector optimized in the near-infrared (0.9-1.8um) wavelength range. Due to limited space at the prime-focus, we have had to develop a novel fibre positioner called "Echidna" together with two OH-airglow suppressed spectrographs. FMOS consists of three subsystems: the prime focus unit for IR, the fibre positioning system/connector units, and the two spectrographs. After full systems integration, FMOS was installed on the telescope in late 2007. Many aspects of performance were checked through various test and engineering observations. In this paper, we present the optical and mechanical components of FMOS and show the results of our on-sky engineering observations to date.

[1]  Ian Lewis,et al.  Developments on the UK FMOS project for the Subaru telescope , 2003, SPIE Astronomical Telescopes + Instrumentation.

[2]  Deep H-Band Galaxy Counts and Half-Light Radii from Hubble Space Telescope/NICMOS Parallel Observations , 1998, astro-ph/9804234.

[3]  Tony Farrell,et al.  The Anglo-Australian Observatory 2dF facility , 2002, astro-ph/0202175.

[4]  George N. Dodsworth,et al.  Design and construction of the fibre system for FMOS , 2008, Astronomical Telescopes + Instrumentation.

[5]  Greg A. Smith,et al.  Echidna: the engineering challenges , 2004, SPIE Astronomical Telescopes + Instrumentation.

[6]  Peter R. Gillingham,et al.  Echidna: a multifiber positioner for the Subaru prime focus , 2000, Astronomical Telescopes and Instrumentation.

[7]  Naoyuki Tamura,et al.  FMOS: the fiber multiple-object spectrograph IV: current status of OHS-based spectrograph , 2006, SPIE Astronomical Telescopes + Instrumentation.

[8]  Damien Jones,et al.  The Fiber Multi-object Spectrograph (FMOS) Project: the Anglo-Australian Observatory role , 2003, SPIE Astronomical Telescopes + Instrumentation.

[9]  Hidehiko Nakaya,et al.  Data acquisition system for the instruments of Subaru Telescope , 2004, SPIE Astronomical Telescopes + Instrumentation.

[10]  Naoyuki Tamura,et al.  Integration, commissioning, and performance of the UK FMOS spectrograph , 2008, Astronomical Telescopes + Instrumentation.

[11]  R. Hata,et al.  OHS: OH-Airglow Suppressor for the Subaru Telescope , 2001 .

[12]  Hanshin Lee,et al.  The UK FMOS spectrograph , 2006, SPIE Astronomical Telescopes + Instrumentation.

[13]  J. Allington-Smith,et al.  Cryogenic Tests of Volume-Phase Holographic Gratings: I. Results at 200 K , 2003, Applied optics.

[14]  Gavin B. Dalton,et al.  Novel coating and photofabrication techniques for astronomy , 2004, SPIE Astronomical Telescopes + Instrumentation.

[15]  Ian Lewis,et al.  The current status of the UK-FMOS spectrograph , 2004, SPIE Astronomical Telescopes + Instrumentation.

[16]  Robert W. Leach,et al.  CCD and IR array controllers , 2000, Astronomical Telescopes and Instrumentation.

[17]  Naruhisa Takato,et al.  FMOS: the Fibre Multi-Object Spectrograph: Part VII. Results of PIR engineering run , 2008, Astronomical Telescopes + Instrumentation.

[18]  Peter R. Gillingham,et al.  Spine development for the Echidna fiber positioner , 2003, SPIE Astronomical Telescopes + Instrumentation.

[19]  George N. Dodsworth,et al.  An ultraprecision fiber connector for FMOS , 2004, SPIE Astronomical Telescopes + Instrumentation.

[20]  Tony Farrell,et al.  Performance of Echidna fiber positioner for FMOS on Subaru , 2008, Astronomical Telescopes + Instrumentation.

[21]  Ian R. Parry,et al.  Fiber multi-object spectrograph (FMOS) for the Subaru Telescope , 2000, Astronomical Telescopes and Instrumentation.

[22]  Graham J. Murray,et al.  A connectorized fiber downlink for FMOS , 2003, Photonics Fabrication Europe.

[23]  Tetsuo Nishimura,et al.  Tohoku University Focal Plane Array Controller (TUFPAC) , 2003, SPIE Astronomical Telescopes + Instrumentation.

[24]  Richard McMahon,et al.  CIRPASS: description, performance, and astronomical results , 2004, SPIE Astronomical Telescopes + Instrumentation.

[25]  Donald N. B. Hall,et al.  OH airglow suppressor spectrograph: design and prospects , 1993, Defense, Security, and Sensing.

[26]  Naoyuki Tamura,et al.  FMOS: the fiber multiple-object spectrograph: Part VI. Onboard performances and results of the engineering observations , 2008, Astronomical Telescopes + Instrumentation.

[27]  Tetsuo Nishimura,et al.  Multi-Object Infrared Camera and Spectrograph (MOIRCS) for the Subaru Telescope* I. Imaging , 2008 .

[28]  Donald N. B. Hall,et al.  OH airglow suppressor for the SUBARU Telescope: OHS for SUBARU , 1994, Astronomical Telescopes and Instrumentation.

[29]  B. Krauskopf,et al.  Proc of SPIE , 2003 .

[30]  Colin Blackburn,et al.  The use of object-oriented techniques and CORBA in astronomical instrumentation control systems , 2004, SPIE Astronomical Telescopes + Instrumentation.