Geological characterization of the Chang'e-4 landing area on the lunar farside

Abstract On January 3, 2019, China's Chang'e-4 probe, accomplishes the first-ever soft landing on Moon's farside in the Von Karman crater floor mare volcanism plain (177.59°E, 45.46°S) within the South Pole-Aitken (SPA) basin. Its surface in-situ measurements would provide the first “ground truth” for lunar farside volcanism and SPA materials. We present a detailed geologic context, topographical, morphological, quantitative geochemical and mineralogical characterization of a 20 × 20 km area centered at the Chang'e-4 landing site, using the latest multi-source high-resolution orbital data sets. The landing area is very flat at a baseline of 30 m, with 90% of surface having slope

[1]  Charles K. Shearer,et al.  MoonRise: South Pole-Aitken Basin Sample Return Mission for Solar System Science , 2010 .

[2]  Joseph W. Boardman,et al.  New insights into lunar petrology: Distribution and composition of prominent low‐Ca pyroxene exposures as observed by the Moon Mineralogy Mapper (M3) , 2011 .

[3]  Long Xiao,et al.  Geological Characteristics of Von Kármán Crater, Northwestern South Pole‐Aitken Basin: Chang'E‐4 Landing Site Region , 2018, Journal of Geophysical Research: Planets.

[4]  David A. Kring,et al.  Potential sample sites for South Pole–Aitken basin impact melt within the Schrödinger basin , 2015 .

[5]  H. Melosh Impact Cratering: A Geologic Process , 1986 .

[6]  J. Z. Liu,et al.  A Close View of Chang'E-4 Landing Site and Science Questions to be Answered by Yutu-2 , 2019 .

[7]  Satoru Yamamoto,et al.  Geologic structure generated by large-impact basin formation observed at the South Pole-Aitken basin on the Moon , 2014 .

[8]  David E. Smith,et al.  A New Lunar Digital Elevation Model from the Lunar Orbiter Laser Altimeter and SELENE Terrain Camera , 2015 .

[9]  Gareth S. Collins,et al.  Constraining the size of the South Pole-Aitken basin impact , 2010 .

[10]  Erwan Mazarico,et al.  Global Distribution of Large Lunar Craters: Implications for Resurfacing and Impactor Populations , 2010, Science.

[11]  H. Hiesinger,et al.  NEW CRATER SIZE-FREQUENCY DISTRIBUTION MEASUREMENTS OF THE SOUTH POLE-AITKEN BASIN , 2012 .

[12]  D. Wilhelms A World of Rock. (Book Reviews: To a Rocky Moon. A Geologist's History of Lunar Exploration.) , 1993 .

[13]  Chunlai Li,et al.  Correlated compositional and mineralogical investigations at the Chang′e-3 landing site , 2015, Nature Communications.

[14]  Carle M. Pieters,et al.  Surviving the heavy bombardment: Ancient material at the surface of South Pole-Aitken Basin , 2004 .

[15]  P. Lucey,et al.  Lunar central peak mineralogy and iron content using the Kaguya Multiband Imager: Reassessment of the compositional structure of the lunar crust , 2015 .

[16]  H. Jay Melosh,et al.  Planetary Surface Processes: References , 2011 .

[17]  Jürgen Oberst,et al.  Farside explorer: unique science from a mission to the farside of the moon , 2012 .

[18]  M. Cintala,et al.  An analysis of differential impact melt‐crater scaling and implications for the terrestrial impact record , 1992 .

[19]  Paul G. Lucey,et al.  The titanium contents of lunar mare basalts , 2000 .

[20]  R. Yingst,et al.  Geologic Mapping of the Planck Quadrangle of the Moon (LQ-29) , 2017 .

[21]  Lionel Wilson,et al.  Generation, ascent and eruption of magma on the Moon:new insights into source depths, magma supply, intrusions and effusive/explosive eruptions (Part 2: Predicted Emplacement Processes and Observations) , 2017 .

[22]  Zhiyong Xiao,et al.  Subsurface structures at the Chang’e-3 landing site: Interpretations from orbital and in-situ imagery data , 2015, Journal of Earth Science.

[23]  Akira Iwasaki,et al.  Long-Lived Volcanism on the Lunar Farside Revealed by SELENE Terrain Camera , 2009, Science.

[24]  Akira Iwasaki,et al.  Timing and characteristics of the latest mare eruption on the Moon , 2011 .

[25]  Maria T. Zuber,et al.  The transition from complex crater to peak-ring basin on the Moon: New observations from the Lunar Orbiter Laser Altimeter (LOLA) instrument , 2011 .

[26]  Paul G. Lucey,et al.  Mineral maps of the Moon , 2003 .

[27]  J. Head Evidence for the sedimentary origin of imbrium sculpture and lunar basin radial texture , 1976 .

[28]  Tsuneo Matsunaga,et al.  Global lunar-surface mapping experiment using the Lunar Imager/Spectrometer on SELENE , 2008 .

[29]  Peter H. Schultz,et al.  Origin and implications of non-radial Imbrium Sculpture on the Moon , 2016, Nature.

[30]  James W. Head,et al.  Survival times of meter-sized boulders on the surface of the Moon , 2013 .

[31]  V. S. Scott,et al.  The Lunar Orbiter Laser Altimeter Investigation on the Lunar Reconnaissance Orbiter Mission , 2010 .

[32]  Akira Iwasaki,et al.  Lunar Global Digital Terrain Model Dataset Produced from SELENE (Kaguya) Terrain Camera Stereo Observations , 2012 .

[33]  Paul G. Lucey,et al.  South Pole–Aitken basin ejecta reveal the Moon’s upper mantle , 2017 .

[34]  A. McEwen,et al.  Lunar Reconnaissance Orbiter Camera (LROC) Instrument Overview , 2010 .

[35]  R. Korotev,et al.  Lunar surface geochemistry: Global concentrations of Th, K, and FeO , 2004 .

[36]  T. Hiroi,et al.  Olivine-rich exposures in the South Pole-Aitken Basin , 2012 .

[37]  P. S. Kumar,et al.  Volcanism on farside of the Moon: New evidence from Antoniadi in South Pole Aitken basin , 2014 .

[38]  Jiannan Zhao,et al.  Geological investigations of Luna 17, Apollo 15 and Chang’E-3 landing sites at Mare Imbrium of the Moon , 2016 .

[39]  Satoru Yamamoto,et al.  Possible mantle origin of olivine around lunar impact basins detected by SELENE , 2010 .

[40]  P. Spudis The Geology of Multi-ring Impact Basins , 2005 .

[41]  Bruce A. Campbell,et al.  Understanding the Lunar Surface and Space-Moon Interactions , 2006 .

[42]  Gareth S. Collins,et al.  The formation of peak rings in large impact craters , 2016, Science.

[43]  P. Schultz,et al.  Origin of nearside structural and geochemical anomalies on the Moon , 2011 .

[44]  W. Hartmann Radial Structures Surrounding Lunar Basins, II: Orientale and Other Systems; Conclusions , 1964 .

[45]  Paul G. Lucey,et al.  Compositional variations of the lunar crust: Results from radiative transfer modeling of central peak spectra , 2009 .

[46]  Harald Hiesinger,et al.  Lunar farside volcanism in and around the South Pole–Aitken basin , 2018 .

[47]  Makiko Ohtake,et al.  Lunar Iron and Titanium Abundance Algorithms Based on SELENE (Kaguya) Multiband Imager Data , 2012 .

[48]  Maria T. Zuber,et al.  Elliptical structure of the lunar South Pole-Aitken basin , 2009 .

[49]  Bruce A. Campbell,et al.  The origin of lunar crater rays , 2000 .

[50]  J. M. Rhodes,et al.  Mare basalts: Crystal chemistry, mineralogy, and petrology , 1976 .

[51]  R. Morris,et al.  Lunar Mare Soils: Space weathering and the major effects of surface‐correlated nanophase Fe , 2001 .

[52]  J. Head Transition from complex craters to multi‐ringed basins on terrestrial planetary bodies: Scale‐dependent role of the expanding melt cavity and progressive interaction with the displaced zone , 2010 .

[53]  J. Anderson,et al.  Modernization of the Integrated Software for Imagers and Spectrometers , 2004 .

[54]  O. Barnouin,et al.  Topographic characterization of lunar complex craters , 2013 .

[55]  Carle M. Pieters,et al.  The Character of South Pole‐Aitken Basin: Patterns of Surface and Subsurface Composition , 2018 .

[56]  Jun Yan,et al.  The scientific objectives and payloads of Chang’E−4 mission , 2018, Planetary and Space Science.

[57]  James W. Head,et al.  Impact melt differentiation in the South Pole-Aitken basin: Some observations and speculations , 2014 .

[58]  Lisa R. Gaddis,et al.  The compositions of the lunar crust and upper mantle: Spectral analysis of the inner rings of lunar impact basins , 2019, Planetary and Space Science.

[59]  Lisa R. Gaddis,et al.  Rock types of South Pole‐Aitken basin and extent of basaltic volcanism , 2001 .

[60]  Guangyou Fang,et al.  Volcanic history of the Imbrium basin: A close-up view from the lunar rover Yutu , 2015, Proceedings of the National Academy of Sciences.

[61]  Carle M. Pieters,et al.  Mineralogy of the lunar crust: Results from Clementine , 1999 .