On the average length of Delaunay triangulations

We shall show that on the average, the total length of a Delaunay triangulation is of the same order as that of a minimum triangulation, under the assumption that our points are drawn from a homogeneous planar Poisson point distribution.

[1]  Jon Louis Bentley,et al.  Multidimensional divide-and-conquer , 1980, CACM.

[2]  Michael Ian Shamos,et al.  Closest-point problems , 1975, 16th Annual Symposium on Foundations of Computer Science (sfcs 1975).

[3]  E. Marks A Lower Bound for the Expected Travel Among $m$ Random Points , 1948 .

[4]  R. E. Miles On the homogeneous planar Poisson point process , 1970 .

[5]  C. Lawson Software for C1 Surface Interpolation , 1977 .

[6]  David G. Kirkpatrick,et al.  A Note on Delaunay and Optimal Triangulations , 1980, Inf. Process. Lett..

[7]  Georges Voronoi Nouvelles applications des paramètres continus à la théorie des formes quadratiques. Deuxième mémoire. Recherches sur les parallélloèdres primitifs. , 1908 .

[8]  Glenn K. Manacher,et al.  Neither the Greedy Nor the Delaunay Triangulation of a Planar Point Set Approximates the Optimal Triangulation , 1979, Inf. Process. Lett..

[9]  M. Shamos Geometry and statistics: problems at the interface , 1976 .

[10]  Georges Voronoi Nouvelles applications des paramètres continus à la théorie des formes quadratiques. Premier mémoire. Sur quelques propriétés des formes quadratiques positives parfaites. , 1908 .

[11]  Jay R. Goldman,et al.  Stochastic Point Processes: Limit Theorems , 1967 .

[12]  Errol L. Lloyd On triangulations of a set of points in the plane , 1977, 18th Annual Symposium on Foundations of Computer Science (sfcs 1977).

[13]  C. Lawson Software for C1 interpolation , 1977 .