An Integrative Approach for Solar Energy Potential Estimation Through 3D Modeling of Buildings and Trees

Abstract. Shadows cast by tall trees and buildings in urban areas can dramatically reduce the direct solar radiation reaching building surfaces. Accurate and detailed 3D modeling of buildings and trees has been a major challenge in the assessment of solar energy potential at building level. This study presents a new approach for the assessment of solar energy potential at the building scale by integrating remote sensing and 3D analysis. The hourly direct normal irradiance was estimated from meteorological satellite observation. The buildings and trees in 3D were modeled based on Light Detection and Ranging (LiDAR) point cloud data and QuickBird imagery. Shadows were simulated using a vector-based ray casting method, and their areas were calculated using a method modified from the Inclusion–Exclusion principle. The accumulated direct energy was integrated with the direct solar irradiance received by building surfaces over time. The proposed approach has been applied to assess the solar energy potential in a building community in the City of Nanjing, Jiangsu, China as a case study. The results show that the approach is highly promising and capable of offering detailed and valuable information on the distribution of local solar radiation on buildings. Résumé. Les ombres projetées par les grands arbres et les bâtiments dans les zones urbaines peuvent considérablement réduire le rayonnement solaire direct atteignant la surface des bâtiments. La modélisation 3D précise et détaillée des bâtiments et des arbres a été un défi majeur dans l'évaluation du potentiel de l'énergie solaire au niveau du bâtiment. Cette étude présente une nouvelle approche pour l'évaluation du potentiel de l'énergie solaire à l'échelle du bâtiment en intégrant la télédétection et l'analyse 3D. L'éclairement normal direct horaire a été estimé à partir d'observations par satellites météorologiques. Les bâtiments et les arbres ont été modélisés en 3D à l'aide de données de nuages de points de détection et télémétrie par ondes lumineuses « Light Detection and Ranging » (LiDAR) et d'images QuickBird. Les ombres ont été simulées à l'aide d'une méthode de raycasting vectoriel et leurs surfaces ont été calculées en utilisant une méthode modifiée du principe d'inclusion-exclusion. L'énergie directe accumulée a été calculée en intégrant dans le temps l'éclairement solaire direct reçu par les surfaces des bâtiments. Pour réaliser une étude de cas, l'approche proposée a été appliquée pour évaluer le potentiel de l'énergie solaire dans une communauté de bâtiments dans la ville de Nanjing, Jiangsu, en Chine. Les résultats montrent que l'approche est très prometteuse et permet d'offrir des informations détaillées et utiles sur la répartition du rayonnement solaire local sur les bâtiments.

[1]  Volker Coors,et al.  Large scale integration of photovoltaics in cities , 2012 .

[2]  J. Chen,et al.  Defining leaf area index for non‐flat leaves , 1992 .

[3]  M. Brito,et al.  Solar energy potential on roofs and facades in an urban landscape , 2013 .

[4]  Michael M. Kazhdan,et al.  Poisson surface reconstruction , 2006, SGP '06.

[5]  R. Kassner,et al.  ANALYSIS OF THE SOLAR POTENTIAL OF ROOFS BY USING OFFICIAL LIDAR DATA , 2008 .

[6]  Bradley S. Neish,et al.  Methodology for estimating solar potential on multiple building rooftops for photovoltaic systems , 2013 .

[7]  G. Štumberger,et al.  Rating of roofs’ surfaces regarding their solar potential and suitability for PV systems, based on LiDAR data , 2013 .

[8]  K. Lim,et al.  Estimation of above ground forest biomass from airborne discrete return laser scanner data using canopy-based quantile estimators , 2004 .

[9]  M. Anderberg,et al.  PVWATTS Version 2 - Enhanced Spatial Resolution for Calculating Grid-Connected PV Performance , 2001 .

[10]  Jaroslav Hofierka,et al.  A New 3‐D Solar Radiation Model for 3‐D City Models , 2012, Trans. GIS.

[11]  G. Sohn,et al.  A DECIDIOUS-CONIFEROUS SINGLE TREE CLASSIFICATION AND INTERNAL STRUCTURE DERIVATION USING AIRBORNE LIDAR DATA , 2009 .

[12]  Melvin Pomerantz,et al.  Solar access of residential rooftops in four California cities , 2009 .

[13]  Tony DeRose,et al.  Surface reconstruction from unorganized points , 1992, SIGGRAPH.

[14]  M. Navvab,et al.  QUANTIFICATION OF AVAILABLE SOLAR IRRADIATION ON ROOFTOPS USING ORTHOPHOTOGRAPH AND LIDAR DATA , 2010 .

[15]  J. M. Norman,et al.  Plant Canopies: Their Growth, Form and Function: The description and measurement of plant canopy structure , 1989 .

[16]  C. Schillings,et al.  Operational method for deriving high resolution direct normal irradiance from satellite data , 2004 .

[17]  W. Stuetzle,et al.  Capturing tree crown formation through implicit surface reconstruction using airborne lidar data , 2009 .

[18]  R. Zilles,et al.  Using a shading matrix to estimate the shading factor and the irradiation in a three-dimensional model of a receiving surface in an urban environment , 2013 .

[19]  T. Santos,et al.  Photovoltaic potential in a Lisbon suburb using LiDAR data , 2012 .

[20]  Sarah Theiss,et al.  Physical Principles Of Remote Sensing , 2016 .

[21]  W. Rees Physical Principles of Remote Sensing , 1990 .

[22]  Lei Chen,et al.  Building detection in an urban area using lidar data and QuickBird imagery , 2012 .

[23]  Pierre Poulin,et al.  A survey of shadow algorithms , 1990, IEEE Computer Graphics and Applications.

[24]  Martin Rutzinger,et al.  Extraction of Vertical Walls from Mobile Laser Scanning Data for Solar Potential Assessment , 2011, Remote. Sens..

[25]  Nicholas C. Coops,et al.  A point obstruction stacking (POSt) approach to wall irradiance modeling across urban environments , 2013 .

[26]  J. Simpson,et al.  Improved estimates of tree-shade effects on residential energy use , 2002 .

[27]  F. D. Heidt,et al.  SOMBRERO: A PC-tool to calculate shadows on arbitrarily oriented surfaces , 1996 .

[28]  Michael Kallay Convex Hull Made Easy , 1986, Inf. Process. Lett..

[29]  Vincenzo Corrado,et al.  Calculation procedure of the shading factor under complex boundary conditions , 2011 .

[30]  Eberhard Steinle,et al.  Airborne laserscanning data for determination of suitable areas for photovoltaics , 2005 .

[31]  Agis M. Papadopoulos,et al.  Assessment of retrofitting measures and solar systems' potential in urban areas using Geographical Information Systems: Application to a Mediterranean city , 2012 .

[32]  George Vosselman,et al.  Building Reconstruction by Target Based Graph Matching on Incomplete Laser Data: Analysis and Limitations , 2009, Sensors.

[33]  Cristina Catita,et al.  Extending solar potential analysis in buildings to vertical facades , 2014, Comput. Geosci..

[34]  N. Kelly,et al.  Light interception efficiency explained by two simple variables: a test using a diversity of small- to medium-sized woody plants. , 2012, The New phytologist.

[35]  J. Kaňuk,et al.  Assessment of photovoltaic potential in urban areas using open-source solar radiation tools , 2009 .

[36]  Norbert Pfeifer,et al.  Automatic Roof Plane Detection and Analysis in Airborne Lidar Point Clouds for Solar Potential Assessment , 2009, Sensors.