QUASI-SYMMETRIC FUNCTIONS AND MOD p MULTIPLE HARMONIC SUMS

We present a number of results about (finite) multiple harmonic sums modulo a prime, which provide interesting parallels to known results about multiple zeta values (i.e., infinite multiple harmonic series). In particular, we prove a “duality” result for mod p harmonic sums similar to (but distinct from) that for multiple zeta values. We also exploit the Hopf algebra structure of the quasi-symmetric functions to do calculations with multiple harmonic sums mod p, and obtain, for each weight n ≤ 9, a set of generators for the space of weight-n multiple harmonic sums mod p.

[1]  Li Jin-q,et al.  Hopf algebras , 2019, Graduate Studies in Mathematics.

[2]  Michael E. Hoffman,et al.  Multiple harmonic series. , 1992 .

[3]  Jianqiang Zhao,et al.  WOLSTENHOLME TYPE THEOREM FOR MULTIPLE HARMONIC SUMS , 2008 .

[4]  I. G. MacDonald,et al.  Symmetric functions and Hall polynomials , 1979 .

[5]  G. Hardy,et al.  An Introduction to the Theory of Numbers , 1938 .

[6]  S. Kurth,et al.  Harmonic sums and Mellin transforms up to two-loop order , 1999 .

[7]  A. Goncharov,et al.  Multiple polylogarithms and mixed Tate motives , 2001 .

[8]  Tomohide Terasoma,et al.  Mixed Tate motives and multiple zeta values , 2002 .

[9]  D. Zagier Values of Zeta Functions and Their Applications , 1994 .

[10]  R. Ehrenborg On Posets and Hopf Algebras , 1996 .

[11]  John Milnor,et al.  On the Structure of Hopf Algebras , 1965 .

[12]  U MichaelE.Hoffman The Algebra of Multiple Harmonic Series , 1997 .

[13]  Michael E. Hoffman,et al.  Relations of multiple zeta values and their algebraic expression , 2000 .

[14]  Ronald L. Graham,et al.  Concrete mathematics - a foundation for computer science (2. ed.) , 1994 .

[15]  Michael E. Hoffman,et al.  Quasi-Shuffle Products , 1999 .

[16]  Israel M. Gelfand,et al.  Noncommutative Symmetrical Functions , 1995 .

[17]  J. A. M. Vermaseren Harmonic sums, Mellin transforms and Integrals , 1999 .

[18]  I. Gessel Multipartite P-partitions and inner products of skew Schur functions , 1983 .

[19]  M. Hazewinkel The Algebra of Quasi-Symmetric Functions Is Free over the Integers , 2001 .

[20]  Jianqiang Zhao Partial Sums of Multiple Zeta Value Series I: Generalizations of Wolstenholme's Theorem ∗ , 2003 .

[21]  Michael Rosen,et al.  A classical introduction to modern number theory , 1982, Graduate texts in mathematics.

[22]  Richard E. Crandall,et al.  Irregular primes and cyclotomic invariants to four million , 1993 .

[23]  Michael E. Hoffman,et al.  The Algebra of Multiple Harmonic Series , 1997 .

[24]  Charalambos A. Charalambides,et al.  Enumerative combinatorics , 2018, SIGA.

[25]  Alain Lascoux,et al.  Noncommutative symmetric functions , 1994 .

[26]  Wells Johnson,et al.  Irregular primes and cyclotomic invariants , 1975 .

[27]  C. Reutenauer,et al.  Duality between Quasi-Symmetrical Functions and the Solomon Descent Algebra , 1995 .

[28]  Ladnor Geissinger Hopf algebras of symmetric functions and class functions , 1977 .

[29]  Bruce C. Berndt,et al.  -Series with Applications to Combinatorics, Number Theory, and Physics , 2001 .

[30]  N. Reshetikhin,et al.  Quantum Groups , 1993, hep-th/9311069.

[31]  Takashi Aoki,et al.  Zeta Functions, Topology and Quantum Physics , 2005 .

[32]  D. Bradley,et al.  Multiple Polylogarithms: A Brief Survey , 2003, math/0310062.

[33]  Khodabakhsh Hessami Pilehrood,et al.  New properties of multiple harmonic sums modulo $p$ and $p$-analogues of Leshchiner's series , 2012, 1206.0407.

[34]  Michel Waldschmidt,et al.  Valeurs zêta multiples. Une introduction , 2000 .

[35]  Michael E. Hoffman Algebraic Aspects of Multiple Zeta Values , 2003, math/0309425.