Scalar Multiplication on Pairing Friendly Elliptic Curves

In the present paper, we propose elliptic curve scalar multiplication methods on pairing-friendly elliptic curves. The proposed method is efficient on elliptic curves on which Atei pairing or optimal pairing is efficiently computed.

[1]  David Mandell Freeman,et al.  Constructing Pairing-Friendly Elliptic Curves with Embedding Degree 10 , 2006, ANTS.

[2]  Victor S. Miller,et al.  Use of Elliptic Curves in Cryptography , 1985, CRYPTO.

[3]  Michael Scott,et al.  A Taxonomy of Pairing-Friendly Elliptic Curves , 2010, Journal of Cryptology.

[4]  Yasuyuki Nogami,et al.  Scalar Multiplication Using Frobenius Expansion over Twisted Elliptic Curve for Ate Pairing Based Cryptography , 2009, IEICE Trans. Fundam. Electron. Commun. Comput. Sci..

[5]  Paulo S. L. M. Barreto,et al.  Efficient pairing computation on supersingular Abelian varieties , 2007, IACR Cryptol. ePrint Arch..

[6]  Hovav Shacham,et al.  Short Signatures from the Weil Pairing , 2001, J. Cryptol..

[7]  Alfred Menezes,et al.  Guide to Elliptic Curve Cryptography , 2004, Springer Professional Computing.

[8]  Scott A. Vanstone,et al.  Faster Point Multiplication on Elliptic Curves with Efficient Endomorphisms , 2001, CRYPTO.

[9]  Michael Scott,et al.  Endomorphisms for Faster Elliptic Curve Cryptography on a Large Class of Curves , 2009, Journal of Cryptology.

[10]  Paulo S. L. M. Barreto,et al.  Pairing-Friendly Elliptic Curves of Prime Order , 2005, Selected Areas in Cryptography.

[11]  Jiwu Huang,et al.  A note on the Ate pairing , 2008, International Journal of Information Security.

[12]  Yasuyuki Nogami,et al.  Skew Frobenius Map and Efficient Scalar Multiplication for Pairing-Based Cryptography , 2008, CANS.

[13]  N. Koblitz Elliptic curve cryptosystems , 1987 .

[14]  Matthew K. Franklin,et al.  Identity-Based Encryption from the Weil Pairing , 2001, CRYPTO.

[15]  Kunio Kobayashi,et al.  Fast Elliptic Curve Algorithm Combining Frobenius Map and Table Reference to Adapt to Higher Characteristic , 1999, EUROCRYPT.

[16]  Michael Scott,et al.  Faster Pairings Using an Elliptic Curve with an Efficient Endomorphism , 2005, INDOCRYPT.

[17]  Frederik Vercauteren,et al.  Optimal Pairings , 2010, IEEE Transactions on Information Theory.

[18]  Frederik Vercauteren,et al.  The Eta Pairing Revisited , 2006, IEEE Transactions on Information Theory.

[19]  Dona Schwartz Pairings , 2010 .

[20]  Yasuyuki Nogami,et al.  Integer Variable chi-Based Ate Pairing , 2008, Pairing.