Inviscid and Viscous Simulations of the Taylor-Green Vortex Flow Using a Modal Discontinuous Galerkin Approach

A modal Discontinuous Galerkin (DG) method is assessed for the Direct Numerical Simulation (DNS) and Large Eddy Simulation (LES) of freely decaying turbulence. We consider as benchmark test case the TaylorGreen vortex flow. Inviscid computations show the conservation and dissipation properties of the DG scheme in the context of 3D non-linear flow problems. DG DNS computations carried at low and moderate Reynolds numbers (Re = 400 and Re = 1600, respectively) show good agreement with a reference solution generated using a Fourier pseudo-spectral code. LES computations are carried out at larger Reynolds number (Re = 3000), and compared to a reference filtered DNS. The Variational Multiscale Simulation framework, which can be straightforwardly implemented in a modal DG code is compared to the classical Smagorinsky approach for LES.

[1]  J. Hesthaven,et al.  Nodal Discontinuous Galerkin Methods: Algorithms, Analysis, and Applications , 2007 .

[2]  Erik Dick,et al.  Construction of explicit and implicit dynamic finite difference schemes and application to the large-eddy simulation of the Taylor-Green vortex , 2009, J. Comput. Phys..

[3]  Chi-Wang Shu,et al.  TVB Runge-Kutta local projection discontinuous galerkin finite element method for conservation laws. II: General framework , 1989 .

[4]  Johan Meyers,et al.  On the model coefficients for the standard and the variational multi-scale Smagorinsky model , 2006, Journal of Fluid Mechanics.

[5]  Leland Jameson,et al.  Numerical Convergence Study of Nearly Incompressible, Inviscid Taylor–Green Vortex Flow , 2005, J. Sci. Comput..

[6]  T. Hughes,et al.  Large Eddy Simulation and the variational multiscale method , 2000 .

[7]  A. Beck,et al.  On the accuracy of high-order discretizations for underresolved turbulence simulations , 2013 .

[8]  Thomas J. R. Hughes,et al.  The multiscale formulation of large eddy simulation: Decay of homogeneous isotropic turbulence , 2001 .

[9]  J. Chemin Incompressible Navier-Stokes equations , 2012 .

[10]  Petros Koumoutsakos,et al.  A comparison of vortex and pseudo-spectral methods for the simulation of periodic vortical flows at high Reynolds numbers , 2011, J. Comput. Phys..

[11]  Favre filtering and macro-temperature in large-eddy simulations of compressible turbulence , 2001 .

[12]  S. Orszag,et al.  Small-scale structure of the Taylor–Green vortex , 1983, Journal of Fluid Mechanics.

[13]  Chi-Wang Shu,et al.  The Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws. IV. The multidimensional case , 1990 .

[14]  Chi-Wang Shu,et al.  TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws III: one-dimensional systems , 1989 .

[15]  G. Taylor,et al.  Mechanism of the production of small eddies from large ones , 1937 .

[16]  Thomas J. R. Hughes,et al.  Large eddy simulation of turbulent channel flows by the variational multiscale method , 2001 .

[17]  Moshe Dubiner Spectral methods on triangles and other domains , 1991 .

[18]  S. Rebay,et al.  A High-Order Accurate Discontinuous Finite Element Method for the Numerical Solution of the Compressible Navier-Stokes Equations , 1997 .

[19]  Andrea Crivellini,et al.  An artificial compressibility flux for the discontinuous Galerkin solution of the incompressible Navier-Stokes equations , 2006, J. Comput. Phys..

[20]  K. Lilly The representation of small-scale turbulence in numerical simulation experiments , 1966 .

[21]  W. H. Reed,et al.  Triangular mesh methods for the neutron transport equation , 1973 .

[22]  Marco Luciano Savini,et al.  Discontinuous Galerkin solution of the Reynolds-averaged Navier–Stokes and k–ω turbulence model equations , 2005 .

[23]  P. Moin,et al.  On the Effect of Numerical Errors in Large Eddy Simulations of Turbulent Flows , 1997 .