Aquarius is required for proper CtIP expression and homologous recombination repair

[1]  Rafael A. Tesorero,et al.  Transient RNA-DNA Hybrids Are Required for Efficient Double-Strand Break Repair , 2016, Cell.

[2]  Lei Li,et al.  DEAD Box 1 Facilitates Removal of RNA and Homologous Recombination at DNA Double-Strand Breaks , 2016, Molecular and Cellular Biology.

[3]  J. Stark,et al.  Tetratricopeptide repeat factor XAB2 mediates the end resection step of homologous recombination , 2016, Nucleic acids research.

[4]  Madalena Tarsounas,et al.  Interplay between Fanconi anemia and homologous recombination pathways in genome integrity , 2016, The EMBO journal.

[5]  A. D’Andrea,et al.  Repair Pathway Choices and Consequences at the Double-Strand Break. , 2016, Trends in cell biology.

[6]  Amit Kumar,et al.  ATM and ATR signaling at a glance , 2016, Journal of Cell Science.

[7]  Andrés Aguilera,et al.  R loops: new modulators of genome dynamics and function , 2015, Nature Reviews Genetics.

[8]  K. Cimprich,et al.  Breaking bad: R-loops and genome integrity. , 2015, Trends in cell biology.

[9]  T. Paull,et al.  CtIP: A DNA damage response protein at the intersection of DNA metabolism. , 2015, DNA repair.

[10]  Jeroen A. A. Demmers,et al.  The core spliceosome as target and effector of non-canonical ATM signaling , 2015, Nature.

[11]  Xu-Dong Zhu,et al.  Cockayne syndrome group B protein regulates DNA double‐strand break repair and checkpoint activation , 2015, The EMBO journal.

[12]  A. Ui,et al.  Transcriptional elongation factor ENL phosphorylated by ATM recruits polycomb and switches off transcription for DSB repair. , 2015, Molecular cell.

[13]  Henning Urlaub,et al.  The RNA helicase Aquarius exhibits structural adaptations mediating its recruitment to spliceosomes , 2015, Nature Structural &Molecular Biology.

[14]  K. Cimprich,et al.  Transcription-coupled nucleotide excision repair factors promote R-loop-induced genome instability. , 2014, Molecular cell.

[15]  B. Staumont DNA double-strand break repair pathway choice , 2014 .

[16]  A. Aguilera,et al.  BRCA2 prevents R-loop accumulation and associates with TREX-2 mRNA export factor PCID2 , 2014, Nature.

[17]  C. Delteil,et al.  DNA damage triggers SAF-A and RNA biogenesis factors exclusion from chromatin coupled to R-loops removal , 2014, Nucleic acids research.

[18]  H. Kurumizaka,et al.  FANCD2 binds CtIP and regulates DNA-end resection during DNA interstrand crosslink repair. , 2014, Cell reports.

[19]  L. Zou,et al.  PRP19 transforms into a sensor of RPA-ssDNA after DNA damage and drives ATR activation via a ubiquitin-mediated circuitry. , 2014, Molecular cell.

[20]  D. Cortez,et al.  DNA damage response: three levels of DNA repair regulation. , 2013, Cold Spring Harbor perspectives in biology.

[21]  D. Piccini,et al.  Senataxin Associates with Replication Forks to Protect Fork Integrity across RNA-Polymerase-II-Transcribed Genes , 2012, Cell.

[22]  S. Boulton,et al.  Playing the end game: DNA double-strand break repair pathway choice. , 2012, Molecular cell.

[23]  C. Bonhomme,et al.  DNAPKcs-dependent arrest of RNA polymerase II transcription in the presence of DNA breaks , 2012, Nature Structural &Molecular Biology.

[24]  Y. Kakeji,et al.  PARP and CSB modulate the processing of transcription-mediated DNA strand breaks. , 2012, Genes & genetic systems.

[25]  Rosa Luna,et al.  Genome Instability and Transcription Elongation Impairment in Human Cells Depleted of THO/TREX , 2011, PLoS genetics.

[26]  J. Manley,et al.  R-loop-mediated genomic instability is caused by impairment of replication fork progression. , 2011, Genes & development.

[27]  Katsuhiko Shirahige,et al.  Genome‐wide function of THO/TREX in active genes prevents R‐loop‐dependent replication obstacles , 2011, The EMBO journal.

[28]  Konstantina Skourti-Stathaki,et al.  Human Senataxin Resolves RNA/DNA Hybrids Formed at Transcriptional Pause Sites to Promote Xrn2-Dependent Termination , 2011, Molecular cell.

[29]  L. Steinmetz,et al.  Yeast Sen1 Helicase Protects the Genome from Transcription-Associated Instability , 2011, Molecular cell.

[30]  R. Kanaar,et al.  Regulation of DNA strand exchange in homologous recombination. , 2010, DNA repair.

[31]  R. Greenberg,et al.  ATM-Dependent Chromatin Changes Silence Transcription In cis to DNA Double-Strand Breaks , 2010, Cell.

[32]  M. Lavin,et al.  Functional role for senataxin, defective in ataxia oculomotor apraxia type 2, in transcriptional regulation. , 2009, Human molecular genetics.

[33]  D. Cortez,et al.  Common mechanisms of PIKK regulation. , 2009, DNA repair.

[34]  T. Helleday,et al.  Transcription-associated recombination in eukaryotes: link between transcription, replication and recombination. , 2009, Mutagenesis.

[35]  Yves Pommier,et al.  γH2AX and cancer , 2008, Nature Reviews Cancer.

[36]  J. Qin,et al.  Isolation of XAB2 Complex Involved in Pre-mRNA Splicing, Transcription, and Transcription-coupled Repair* , 2008, Journal of Biological Chemistry.

[37]  T. Misteli,et al.  The ATM repair pathway inhibits RNA polymerase I transcription in response to chromosome breaks , 2007, Nature.

[38]  J. Steitz,et al.  A spliceosomal intron binding protein, IBP160, links position-dependent assembly of intron-encoded box C/D snoRNP to pre-mRNA splicing. , 2006, Molecular cell.

[39]  F. Prado,et al.  Replication Fork Progression Is Impaired by Transcription in Hyperrecombinant Yeast Cells Lacking a Functional THO Complex , 2006, Molecular and Cellular Biology.

[40]  J. Manley,et al.  Inactivation of the SR Protein Splicing Factor ASF/SF2 Results in Genomic Instability , 2005, Cell.

[41]  Andrés Aguilera,et al.  Cotranscriptionally formed DNA:RNA hybrids mediate transcription elongation impairment and transcription-associated recombination. , 2003, Molecular cell.

[42]  A. Aguilera The connection between transcription and genomic instability , 2002, The EMBO journal.

[43]  A. Datta,et al.  Stimulation of Mitotic Recombination Events by High Levels of RNA Polymerase II Transcription in Yeast , 2000, Molecular and Cellular Biology.