Dependence of the grain boundary energy on the alloy composition in the bcc iron–chromium alloy: A molecular dynamics study

[1]  Yasushi Shibuta,et al.  A molecular dynamics study of the fcc–bcc phase transformation kinetics of iron , 2008 .

[2]  Y. Shibuta,et al.  Melting and nucleation of iron nanoparticles: A molecular dynamics study , 2007 .

[3]  M. Shiga,et al.  Grain Boundary Decohesion by Sulfur Segregation in Ferromagnetic Iron and Nickel-A First-Principles Study- , 2006 .

[4]  R. Yamamoto,et al.  Effects of Segregated Ga on an Al Grain Boundary : A First-Principles Computational Tensile Test , 2006 .

[5]  T. Nagano,et al.  Calculation of the interfacial energies between α and γ iron and equilibrium particle shape , 2006 .

[6]  Hideo Kaburaki,et al.  Grain Boundary Decohesion by Impurity Segregation in a Nickel-Sulfur System , 2005, Science.

[7]  Mark Asta,et al.  Crystal-melt interfacial free energies and mobilities in fcc and bcc Fe , 2004 .

[8]  R. Johnson,et al.  Misfit-energy-increasing dislocations in vapor-deposited CoFe/NiFe multilayers , 2004 .

[9]  James R. Morris,et al.  The anisotropic free energy of the Lennard-Jones crystal-melt interface , 2003 .

[10]  B. Laird,et al.  Direct calculation of the crystal–melt interfacial free energies for continuous potentials: Application to the Lennard-Jones system , 2003, cond-mat/0301160.

[11]  A. Petford-Long,et al.  Atomic scale structure of sputtered metal multilayers , 2001 .

[12]  A. Karma,et al.  Method for computing the anisotropy of the solid-liquid interfacial free energy. , 2001, Physical review letters.

[13]  Hideharu Nakashima,et al.  Grain Boundary Energy and Structure of α-Fe Symmetric Tilt Boundary , 2000 .

[14]  S. Phillpot,et al.  Amorphous structure of grain boundaries and grain junctions in nanocrystalline silicon by molecular-dynamics simulation , 1997 .

[15]  Wolf,et al.  Thermodynamic Criterion for the Stability of Amorphous Intergranular Films in Covalent Materials. , 1996, Physical review letters.

[16]  M. Baskes,et al.  Modified embedded-atom potentials for cubic materials and impurities. , 1992, Physical review. B, Condensed matter.

[17]  Hashem Rafii-Tabar,et al.  Long-range Finnis-Sinclair potentials for f.c.c. metallic alloys , 1991 .

[18]  D. Wolf Correlation between the energy and structure of grain boundaries in b.c.c. metals. II. Symmetrical tilt boundaries , 1990 .

[19]  A. Sutton,et al.  Long-range Finnis–Sinclair potentials , 1990 .

[20]  Sidney Yip,et al.  How Do Crystals Melt , 1989 .

[21]  J. Banavar,et al.  Computer Simulation of Liquids , 1988 .

[22]  Foiles,et al.  Embedded-atom-method functions for the fcc metals Cu, Ag, Au, Ni, Pd, Pt, and their alloys. , 1986, Physical review. B, Condensed matter.

[23]  George H. Gilmer,et al.  Molecular dynamics investigation of the crystal–fluid interface. VI. Excess surface free energies of crystal–liquid systems , 1986 .

[24]  H. Berendsen,et al.  Molecular dynamics with coupling to an external bath , 1984 .

[25]  M. Finnis,et al.  A simple empirical N-body potential for transition metals , 1984 .

[26]  M. Baskes,et al.  Embedded-atom method: Derivation and application to impurities, surfaces, and other defects in metals , 1984 .

[27]  R. Johnson Empirical potentials and their use in the calculation of energies of point defects in metals , 1973 .

[28]  L. Girifalco,et al.  Application of the Morse Potential Function to Cubic Metals , 1959 .

[29]  P. Morse Diatomic Molecules According to the Wave Mechanics. II. Vibrational Levels , 1929 .

[30]  George Rennie jun. Esq. XXVI. Account of experiments made on the strength of materials. In a Letter to Thomas Young, M.D. For. Sec. R.S. With Notes by Mr. T. Tredgold , 1819 .

[31]  Sandra Lowe,et al.  Handbook of Materials Modeling , 2020 .

[32]  Hans Leo Lukas,et al.  Computational Thermodynamics: The Calphad Method , 2007 .

[33]  C. J. Smithells,et al.  Smithells metals reference book , 1949 .