Review—Polymer Electrolytes for Sodium Batteries

With higher nature abundance and lower production cost of sodium-based materials compared to lithium-based ones, sodium batteries have been arising as one of the most promising energy storage systems serving as complementary power sources to the popular lithium-ion batteries. Replacing conventional liquid electrolytes containing fl ammable liquid solvents with polymer electrolytes (PEs) empowers sodium batteries with inherently enhanced safety at a low expense of processability. In this contribution, we present a comprehensive overview on the research progresses and advances in the PE-based sodium batteries, including three main categories of PEs, i.e., solid polymer electrolytes (SPEs), composite solid polymer electrolytes (CSPEs), and plasticized/gel polymer electrolytes (PPEs/GPEs). The energy densities of sodium batteries at cell level are estimated and compared with their lithium counterparts. The research development of PE-based sodium batteries is scrutinized and the remaining challenges and possible solutions are intensively discussed. The purpose of the present work is not only to provide a well-balanced status quo of PE-based sodium batteries but also to address the possible remedies for improving their performance and other post lithium battery technologies, in hope of facilitating their large-scale deployment in the market.

[1]  Yan Yu,et al.  Toward High Energy Density All Solid‐State Sodium Batteries with Excellent Flexibility , 2020, Advanced Energy Materials.

[2]  J. Goodenough,et al.  Tribute to Michel Armand: from Rocking Chair – Li-ion to Solid-State Lithium Batteries , 2020, Journal of The Electrochemical Society.

[3]  Lilu Liu,et al.  Liquid electrolyte immobilized in compact polymer matrix for stable sodium metal anodes , 2019 .

[4]  G. G. Eshetu,et al.  From solid solution electrodes and the rocking-chair concept to today's batteries. , 2019, Angewandte Chemie.

[5]  Chenglong Zhao,et al.  Revealing an Interconnected Interfacial Layer in Solid‐State Polymer Sodium Batteries , 2019, Angewandte Chemie International Edition.

[6]  Yaxiang Lu,et al.  2019 Nobel Prize for the Li-Ion Batteries and New Opportunities and Challenges in Na-Ion Batteries , 2019, ACS Energy Letters.

[7]  R. Hagiwara,et al.  Advances in sodium secondary batteries utilizing ionic liquid electrolytes , 2019, Energy & Environmental Science.

[8]  Haiying Che,et al.  Poly (vinylene carbonate)-Based Composite Polymer Electrolyte with Enhanced Interfacial Stability to Realize High Performance Room-Temperature Solid-State Sodium Batteries. , 2019, ACS applied materials & interfaces.

[9]  Yun‐Sung Lee,et al.  Thermoplastic Polyurethane Elastomer-Based Gel Polymer Electrolytes for Sodium Metal Cells with Enhanced Cycling Performance. , 2019, ChemSusChem.

[10]  J. Chai,et al.  A novel single-ion conducting gel polymer electrolyte based on polymeric sodium tartaric acid borate for elevated-temperature sodium metal batteries , 2019, Solid State Ionics.

[11]  Ram Kumar,et al.  Effect of Al2O3 nanoparticles on ionic conductivity of PVdF-HFP/PMMA blend-based Na+-ion conducting nanocomposite gel polymer electrolyte , 2019, Journal of Solid State Electrochemistry.

[12]  Xiaoling Liu,et al.  Stable cross-linked gel terpolymer electrolyte containing methyl phosphonate for sodium ion batteries , 2019, Journal of Membrane Science.

[13]  G. G. Eshetu,et al.  Designer Anion Enabling Solid-State Lithium-Sulfur Batteries , 2019, Joule.

[14]  D. Mecerreyes,et al.  Poly(ionic liquid) iongel membranes for all solid-state rechargeable sodium battery , 2019, Journal of Membrane Science.

[15]  Yongyao Xia,et al.  An All-Solid-State Sodium–Sulfur Battery Using a Sulfur/Carbonized Polyacrylonitrile Composite Cathode , 2019, ACS Applied Energy Materials.

[16]  Lilu Liu,et al.  In Situ Formation of a Stable Interface in Solid-State Batteries , 2019, ACS Energy Letters.

[17]  Chunmei Li,et al.  Enhanced Lithium-Ion Conductivity of Polymer Electrolytes by Selective Introduction of Hydrogen into the Anion. , 2019, Angewandte Chemie.

[18]  M. Armand,et al.  Recent Progress on Organic Electrodes Materials for Rechargeable Batteries and Supercapacitors , 2019, Materials.

[19]  A. Manthiram,et al.  A High-Performance All-Solid-State Sodium Battery with a Poly(ethylene oxide)–Na3Zr2Si2PO12 Composite Electrolyte , 2019, ACS Materials Letters.

[20]  Lixin Qiao,et al.  Energy Density Assessment of Organic Batteries , 2019, ACS Applied Energy Materials.

[21]  Ziheng Wang,et al.  An Ionic Liquid/Poly(vinylidene fluoride‐co‐hexafluoropropylene) Gel‐Polymer Electrolyte with a Compatible Interface for Sodium‐Based Batteries , 2019, ChemElectroChem.

[22]  Jonas Mindemark,et al.  Towards room temperature operation of all-solid-state Na-ion batteries through polyester–polycarbonate-based polymer electrolytes , 2019, Energy Storage Materials.

[23]  Hongtao Qu,et al.  Safety-Enhanced Polymer Electrolytes for Sodium Batteries: Recent Progress and Perspectives. , 2019, ACS applied materials & interfaces.

[24]  Hong Li,et al.  Practical Evaluation of Li-Ion Batteries , 2019, Joule.

[25]  Jonas Mindemark,et al.  Stable Cycling of Sodium Metal All-Solid-State Batteries with Polycarbonate-Based Polymer Electrolytes , 2019, ACS Applied Polymer Materials.

[26]  Jian-jun Zhang,et al.  Flame-retardant quasi-solid polymer electrolyte enabling sodium metal batteries with highly safe characteristic and superior cycling stability , 2019, Nano Research.

[27]  F. Ciucci,et al.  Stabilizing Na-metal batteries with a manganese oxide cathode using a solid-state composite electrolyte , 2019, Journal of Power Sources.

[28]  Jian-jun Zhang,et al.  An in-situ polymerized solid polymer electrolyte enables excellent interfacial compatibility in lithium batteries , 2019, Electrochimica Acta.

[29]  M. Martínez-Ibañez,et al.  Improvement of the Cationic Transport in Polymer Electrolytes with (Difluoromethanesulfonyl)(trifluoromethanesulfonyl)imide Salts , 2019, ChemElectroChem.

[30]  T. T. Nguyen,et al.  Sodium ion conducting gel polymer electrolyte using poly(vinylidene fluoride hexafluoropropylene) , 2019, Materials Science and Engineering: B.

[31]  D. Macfarlane,et al.  Supported Ionic Liquid Gel Membrane Electrolytes for a Safe and Flexible Sodium Metal Battery , 2019, ACS Sustainable Chemistry & Engineering.

[32]  Zhiqiang Niu,et al.  Design Strategies toward Enhancing the Performance of Organic Electrode Materials in Metal-Ion Batteries , 2018, Chem.

[33]  Heng Zhang,et al.  Electrolyte Additives for Lithium Metal Anodes and Rechargeable Lithium Metal Batteries: Progress and Perspectives. , 2018, Angewandte Chemie.

[34]  Jin Il Kim,et al.  Design of a porous gel polymer electrolyte for sodium ion batteries , 2018, Journal of Membrane Science.

[35]  Xingchao Wang,et al.  Flexible and Tailorable Na−CO2 Batteries Based on an All-Solid-State Polymer Electrolyte , 2018, ChemElectroChem.

[36]  S. Janakiraman,et al.  A porous poly (vinylidene fluoride-co-hexafluoropropylene) based separator-cum-gel polymer electrolyte for sodium-ion battery , 2018, Journal of Electroanalytical Chemistry.

[37]  Jun Lu,et al.  Solid electrolytes and interfaces in all-solid-state sodium batteries: Progress and perspective , 2018, Nano Energy.

[38]  Jonas Mindemark,et al.  ERRATUM to “Polycarbonates as alternative electrolyte host materials for solid-state sodium batteries” [Electrochem. Commun. 77 (2017) 58–61] , 2018, Electrochemistry Communications.

[39]  Chunwen Sun,et al.  Durable Sodium Battery with a Flexible Na3Zr2Si2PO12-PVDF-HFP Composite Electrolyte and Sodium/Carbon Cloth Anode. , 2018, ACS applied materials & interfaces.

[40]  Xiaogang Zhang,et al.  Enhanced Cycle Performance of Polyimide Cathode Using a Quasi-Solid-State Electrolyte , 2018, The Journal of Physical Chemistry C.

[41]  Yong Lu,et al.  Electrolyte and Interface Engineering for Solid-State Sodium Batteries , 2018, Joule.

[42]  Yi Yin,et al.  A solid polymer electrolyte based on star-like hyperbranched β-cyclodextrin for all-solid-state sodium batteries , 2018, Journal of Power Sources.

[43]  L. M. Rodriguez-Martinez,et al.  Electrolyte Additives for Room-Temperature, Sodium-Based, Rechargeable Batteries. , 2018, Chemistry, an Asian journal.

[44]  Bryan W. Byles,et al.  High‐Capacity All‐Solid‐State Sodium Metal Battery with Hybrid Polymer Electrolytes , 2018, Advanced Energy Materials.

[45]  V. Thangadurai,et al.  Engineering Materials for Progressive All-Solid-State Na Batteries , 2018, ACS Energy Letters.

[46]  M. Armand,et al.  A Stable Quasi-Solid-State Sodium-Sulfur Battery. , 2018, Angewandte Chemie.

[47]  Xingchao Wang,et al.  A novel PMA/PEG-based composite polymer electrolyte for all-solid-state sodium ion batteries , 2018, Nano Research.

[48]  D. Lim,et al.  An Electrospun Nanofiber Membrane as Gel‐Based Electrolyte for Room‐Temperature Sodium–Sulfur Batteries , 2018 .

[49]  Chenglong Zhao,et al.  Solid‐State Sodium Batteries , 2018 .

[50]  Jiaqi Huang,et al.  Dual‐Layered Film Protected Lithium Metal Anode to Enable Dendrite‐Free Lithium Deposition , 2018, Advanced materials.

[51]  T. Rojo,et al.  From Charge Storage Mechanism to Performance: A Roadmap toward High Specific Energy Sodium‐Ion Batteries through Carbon Anode Optimization , 2018 .

[52]  Daniel Brandell,et al.  Sodium‐Ion Battery Electrolytes: Modeling and Simulations , 2018 .

[53]  Haixia Li,et al.  Room-temperature rechargeable Na-SO2 batteries containing a gel-polymer electrolyte. , 2018, Chemical communications.

[54]  Jou‐Hyeon Ahn,et al.  Ultralong Life Organic Sodium Ion Batteries Using a Polyimide/Multiwalled Carbon Nanotubes Nanocomposite and Gel Polymer Electrolyte , 2018 .

[55]  Xing-long Wu,et al.  Quasi-Solid-State Sodium-Ion Full Battery with High-Power/Energy Densities. , 2018, ACS applied materials & interfaces.

[56]  Weihua Chen,et al.  Novel safer phosphonate-based gel polymer electrolytes for sodium-ion batteries with excellent cycling performance , 2018 .

[57]  M. Kunitski,et al.  Double-slit photoelectron interference in strong-field ionization of the neon dimer , 2018, Nature Communications.

[58]  Yong‐Sheng Hu,et al.  Ionic liquids and derived materials for lithium and sodium batteries. , 2018, Chemical Society reviews.

[59]  S. Passerini,et al.  A cost and resource analysis of sodium-ion batteries , 2018 .

[60]  Xiaobo Ji,et al.  High Ion‐Conducting Solid‐State Composite Electrolytes with Carbon Quantum Dot Nanofillers , 2018, Advanced science.

[61]  Shalu,et al.  Electrochemical investigations of Na0.7CoO2 cathode with PEO-NaTFSI-BMIMTFSI electrolyte as promising material for Na-rechargeable battery , 2018, Journal of Solid State Electrochemistry.

[62]  Yong‐Sheng Hu,et al.  Na 3.4 Zr 1.8 Mg 0.2 Si 2 PO 12 filled poly(ethylene oxide)/Na(CF 3 SO 2 ) 2 N as flexible composite polymer electrolyte for solid-state sodium batteries , 2017 .

[63]  L. M. Rodriguez-Martinez,et al.  Lithium Azide as an Electrolyte Additive for All-Solid-State Lithium-Sulfur Batteries. , 2017, Angewandte Chemie.

[64]  Federico Bella,et al.  Light-cured polymer electrolytes for safe, low-cost and sustainable sodium-ion batteries , 2017 .

[65]  Deepak Kumar Effect of organic solvent addition on electrochemical properties of ionic liquid based Na+ conducting gel electrolytes , 2017 .

[66]  Soojin Park,et al.  Thermal and Electrical Conducting Property of Sodium Polymer Electrolyte Containing Barium Titanate Filler , 2017 .

[67]  J. L. Gómez‐Cámer,et al.  Na‐Ion Batteries for Large Scale Applications: A Review on Anode Materials and Solid Electrolyte Interphase Formation , 2017 .

[68]  Jin Il Kim,et al.  A Structurable Gel‐Polymer Electrolyte for Sodium Ion Batteries , 2017 .

[69]  J. F. Vélez,et al.  Imidazolium-based Mono and Dicationic Ionic Liquid Sodium Polymer Gel Electrolytes , 2017 .

[70]  Jang‐Yeon Hwang,et al.  Sodium-ion batteries: present and future. , 2017, Chemical Society reviews.

[71]  Karina B. Hueso,et al.  Challenges and perspectives on high and intermediate-temperature sodium batteries , 2017, Nano Research.

[72]  Nagore Ortiz-Vitoriano,et al.  High performance manganese-based layered oxide cathodes: overcoming the challenges of sodium ion batteries , 2017 .

[73]  Hong Wang,et al.  Electrolyte design strategies and research progress for room-temperature sodium-ion batteries , 2017 .

[74]  Xingguo Qi,et al.  A new Na[(FSO2)(n-C4F9SO2)N]-based polymer electrolyte for solid-state sodium batteries , 2017 .

[75]  Li Lu,et al.  A hybrid polymer/oxide/ionic-liquid solid electrolyte for Na-metal batteries , 2017 .

[76]  Dingchang Lin,et al.  Enhancing ionic conductivity in composite polymer electrolytes with well-aligned ceramic nanowires , 2017, Nature Energy.

[77]  Jonas Mindemark,et al.  Polycarbonates as alternative electrolyte host materials for solid-state sodium batteries , 2017 .

[78]  Soojin Park,et al.  Effect of addition of 1-butyl-3-methylimidazolium thiocyanate on conductivity of Na-containing polymer electrolyte , 2017, Research on Chemical Intermediates.

[79]  Luyi Yang,et al.  Nanofiber networks of Na3V2(PO4)3 as a cathode material for high performance all-solid-state sodium-ion batteries , 2017 .

[80]  Chong Yan,et al.  Fluoroethylene Carbonate Additives to Render Uniform Li Deposits in Lithium Metal Batteries , 2017 .

[81]  M. Dissanayake,et al.  Poly-acrylonitrile-based gel-polymer electrolytes for sodium-ion batteries , 2017, Ionics.

[82]  L. M. Rodriguez-Martinez,et al.  Single lithium-ion conducting solid polymer electrolytes: advances and perspectives. , 2017, Chemical Society reviews.

[83]  Hansong Cheng,et al.  Single ion conducting sodium ion batteries enabled by a sodium ion exchanged poly(bis(4-carbonyl benzene sulfonyl)imide-co-2,5-diamino benzesulfonic acid) polymer electrolyte , 2017 .

[84]  Jianchao Sun,et al.  Quasi–solid state rechargeable Na-CO2 batteries with reduced graphene oxide Na anodes , 2017, Science Advances.

[85]  Lilu Liu,et al.  Sodium Bis(fluorosulfonyl)imide/Poly(ethylene oxide) Polymer Electrolytes for Sodium‐Ion Batteries , 2016 .

[86]  Yong‐Sheng Hu,et al.  A ceramic/polymer composite solid electrolyte for sodium batteries , 2016 .

[87]  Lide M. Rodriguez-Martinez,et al.  Estimation of energy density of Li-S batteries with liquid and solid electrolytes , 2016 .

[88]  P. Johansson,et al.  Plasticization of NaX-PEO solid polymer electrolytes by Pyr(13)X ionic liquids , 2016 .

[89]  Weidong Zhou,et al.  A Sodium‐Ion Battery with a Low‐Cost Cross‐Linked Gel‐Polymer Electrolyte , 2016 .

[90]  Yongwon Lee,et al.  Highly stable linear carbonate-containing electrolytes with fluoroethylene carbonate for high-performance cathodes in sodium-ion batteries , 2016 .

[91]  M. Singh,et al.  Ionic liquid-based sodium ion-conducting composite gel polymer electrolytes: effect of active and passive fillers , 2016, Journal of Solid State Electrochemistry.

[92]  Shalu,et al.  Development of ionic liquid mediated novel polymer electrolyte membranes for application in Na-ion batteries , 2016 .

[93]  Chunmei Li,et al.  Sodium-Oxygen Battery: Steps Toward Reality. , 2016, The journal of physical chemistry letters.

[94]  N. K. Jyothi,et al.  Ionic conductivity and battery characteristic studies of a new PAN-based Na + ion conducting gel polymer electrolyte system , 2016 .

[95]  Xinhai Xu,et al.  Current trends and future challenges of electrolytes for sodium-ion batteries , 2016 .

[96]  D. Quesnel,et al.  Synthesis and electrochemical study of sodium ion transport polymer gel electrolytes , 2016 .

[97]  Yayuan Liu,et al.  High Ionic Conductivity of Composite Solid Polymer Electrolyte via In Situ Synthesis of Monodispersed SiO2 Nanospheres in Poly(ethylene oxide). , 2016, Nano letters.

[98]  F. Bella,et al.  Photopolymer Electrolytes for Sustainable, Upscalable, Safe, and Ambient-Temperature Sodium-Ion Secondary Batteries. , 2015, ChemSusChem.

[99]  M. Armand,et al.  All-Solid-State Lithium-Ion Batteries with Grafted Ceramic Nanoparticles Dispersed in Solid Polymer Electrolytes. , 2015, ChemSusChem.

[100]  Lifang Jiao,et al.  Update on anode materials for Na-ion batteries , 2015 .

[101]  F. Bella,et al.  Cellulose-based novel hybrid polymer electrolytes for green and efficient Na-ion batteries , 2015 .

[102]  A. Manthiram,et al.  Ambient temperature sodium-sulfur batteries. , 2015, Small.

[103]  J. Goodenough,et al.  A Composite Gel–Polymer/Glass–Fiber Electrolyte for Sodium‐Ion Batteries , 2015 .

[104]  Young Jin Kim,et al.  Interfacial architectures based on a binary additive combination for high-performance Sn4P3 anodes in sodium-ion batteries , 2015 .

[105]  B. Hwang,et al.  Solid-state polymer nanocomposite electrolyte of TiO2/PEO/NaClO4 for sodium ion batteries , 2015 .

[106]  Bruno Scrosati,et al.  Energy storage materials synthesized from ionic liquids. , 2014, Angewandte Chemie.

[107]  Shinichi Komaba,et al.  Research development on sodium-ion batteries. , 2014, Chemical reviews.

[108]  S. Lanceros‐Méndez,et al.  Influence of different salts in poly(vinylidene fluoride-co-trifluoroethylene) electrolyte separator membranes for battery applications , 2014 .

[109]  Yongwon Lee,et al.  Cyclic carbonate based-electrolytes enhancing the electrochemical performance of Na4Fe3(PO4)2(P2O7) cathodes for sodium-ion batteries , 2014 .

[110]  Yuyan Shao,et al.  Controlling SEI Formation on SnSb‐Porous Carbon Nanofibers for Improved Na Ion Storage , 2014, Advanced materials.

[111]  H. Oji,et al.  Phosphorus Electrodes in Sodium Cells: Small Volume Expansion by Sodiation and the Surface‐Stabilization Mechanism in Aprotic Solvent , 2014 .

[112]  Liquan Chen,et al.  Room-temperature stationary sodium-ion batteries for large-scale electric energy storage , 2013 .

[113]  Teófilo Rojo,et al.  Update on Na-based battery materials. A growing research path , 2013 .

[114]  M. Armand,et al.  Cation only conduction in new polymer–SiO2 nanohybrids: Na+ electrolytes , 2013 .

[115]  Yan-Qing Zhao,et al.  Nanofiber membrane based on ionic liquids as high-performance polymer electrolyte for sodium electrochemical device , 2013, Ionics.

[116]  Donghan Kim,et al.  Sodium‐Ion Batteries , 2013 .

[117]  Teófilo Rojo,et al.  High temperature sodium batteries: status, challenges and future trends , 2013 .

[118]  R. Damle,et al.  Role of silica nanoparticles in conductivity enhancement of nanocomposite solid polymer electrolytes: (PEGx NaBr): ySiO2 , 2013, Ionics.

[119]  J. Fergus Ion transport in sodium ion conducting solid electrolytes , 2012 .

[120]  Teófilo Rojo,et al.  Na-ion batteries, recent advances and present challenges to become low cost energy storage systems , 2012 .

[121]  B. Dunn,et al.  Electrical Energy Storage for the Grid: A Battery of Choices , 2011, Science.

[122]  S. Hashmi,et al.  Studies on poly(vinylidene fluoride-co-hexafluoropropylene) based gel electrolyte nanocomposite for sodium–sulfur batteries , 2011 .

[123]  S. Hashmi,et al.  Ion transport and ion–filler-polymer interaction in poly(methyl methacrylate)-based, sodium ion conducting, gel polymer electrolytes dispersed with silica nanoparticles , 2010 .

[124]  S. Hashmi,et al.  Ionic liquid based sodium ion conducting gel polymer electrolytes , 2010 .

[125]  P. Bruce,et al.  Alkali metal crystalline polymer electrolytes. , 2009, Nature materials.

[126]  M. Armand,et al.  Building better batteries , 2008, Nature.

[127]  H. Ahn,et al.  The short-term cycling properties of Na/PVdF/S battery at ambient temperature , 2008 .

[128]  L. Mai,et al.  Electrochemical studies on PVC/PVdF blend-based polymer electrolytes , 2007 .

[129]  U. V. S. Rao,et al.  Study of dc conductivity and battery application of polyethylene oxide/polyaniline and its composites , 2006 .

[130]  W. Chen,et al.  Preparation and characterization of (PVP + NaClO4) electrolytes for battery applications , 2006, The European physical journal. E, Soft matter.

[131]  Jou-Hyeon Ahn,et al.  Room-temperature solid-state sodium/sulfur battery , 2006 .

[132]  H. Ahn,et al.  Ionic Conductivity of Sodium Ion with NaCF3SO3 Salts in Electrolyte for Sodium Batteries , 2005 .

[133]  T. Vasudevan,et al.  Synthesis and studies of new plasticized PVP: NaClO3 electrolyte system for battery applications , 2003 .

[134]  T. Sreekanth,et al.  Study of the plasticizer effect on a (PEO+NaYF4) polymer electrolyte and its use in an electrochemical cell , 1999 .

[135]  M. Doeff,et al.  Effect of Electrolyte Composition on the Performance of Sodium/Polymer Cells , 1997 .

[136]  J. R. Stevens,et al.  Composite polyether based solid electrolytes , 1995 .

[137]  S. S. Rao,et al.  A new Na+ ion conducting polymer electrolyte based on (PEO+NaYF4) and its use as an electrochemical cell , 1994 .

[138]  Marca M. Doeff,et al.  Orthorhombic Na x MnO2 as a Cathode Material for Secondary Sodium and Lithium Polymer Batteries , 1994 .

[139]  Marca M. Doeff,et al.  Electrochemical Insertion of Sodium into Carbon , 1993 .

[140]  B. Scrosati,et al.  Composite Polymer Electrolytes , 1991 .

[141]  W. Smyrl,et al.  Insertion reactions of sodium in V6O13 single crystals from a solid polymeric electrolyte , 1991 .

[142]  W. Smyrl,et al.  Sodium / V 6 O 13 Polymer Electrolyte Cells , 1989 .

[143]  R. Koksbang,et al.  Lithium and sodium insertion in ternary chromium oxides , 1988 .

[144]  W. Smyrl,et al.  Applications of multivalent ionic conductors to polymeric electrolyte batteries. Technical report No. 8, September 1986-August 1987 , 1987 .

[145]  T. Jacobsen,et al.  A rechargeable all-solid-state sodium cell with polymer electrolyte , 1985 .

[146]  K. Matsumoto,et al.  Ionic Liquid Polymer Electrolyte Based on Bis(fluorosulfonyl) Amide for Sodium Secondary Batteries , 2020 .

[147]  Teófilo Rojo,et al.  Editors' Choice—Review—Innovative Polymeric Materials for Better Rechargeable Batteries: Strategies from CIC Energigune , 2019, Journal of The Electrochemical Society.

[148]  W. Hager,et al.  and s , 2019, Shallow Water Hydraulics.

[149]  Lide M. Rodriguez-Martinez,et al.  Review—Solid Electrolytes for Safe and High Energy Density Lithium-Sulfur Batteries: Promises and Challenges , 2018 .

[150]  Jian-jun Zhang,et al.  In Situ Formation of Polysulfonamide Supported Poly(ethylene glycol) Divinyl Ether Based Polymer Electrolyte toward Monolithic Sodium Ion Batteries. , 2017, Small.

[151]  Yuping Wu,et al.  A sodium ion conducting gel polymer electrolyte , 2015 .

[152]  Teófilo Rojo,et al.  A comprehensive review of sodium layered oxides: powerful cathodes for Na-ion batteries , 2015 .

[153]  M. Winter,et al.  Fluoroethylene Carbonate as Electrolyte Additive in Tetraethylene Glycol Dimethyl Ether Based Electrolytes for Application in Lithium Ion and Lithium Metal Batteries , 2015 .

[154]  Bruno Scrosati,et al.  Fast Ion Transport in Solids , 1993 .