A shock tube study of the H2/O2/CO/Ar and H2/N2O/CO/Ar Systems: Measurement of the rate constant for H + N2O = N2 + OH

[1]  S. Bauer,et al.  Kinetics of the Nitrous Oxide–Hydrogen Reaction , 1969 .

[2]  A. Dean,et al.  Oxidation of Carbon Monoxide by Oxygen in Shock Waves , 1970 .

[3]  A. Dean Dissociation of carbon dioxide behind reflected shock waves , 1973 .

[4]  Garry L. Schott,et al.  Further studies of exponential branching rates in reflected-shock heated, nonstoichiometric H2COO2 systems , 1973 .

[5]  J. Dove,et al.  Examination of Possible Non-Arrhenius Behavior in the reactions , 1973 .

[6]  W. Seitz,et al.  Transient oxygen atom yields in H2 ? O2 ignition and the rate coefficient for O + H2 → OH + H , 1974 .

[7]  D. D. Drysdale,et al.  An evaluation of the rate data for the reaction CO + OH → CO2 + H , 1974 .

[8]  Robert Megargle,et al.  On-Line Computer Acquisition of Data from a Shocktube Experiment*. , 1974 .

[9]  W. Gardiner,et al.  Rate constant of OH + H2 = H2O + H from 1350 to 1600 K , 1974 .

[10]  C. P. Lazzara,et al.  Rate coefficient for H + CH4 → H2 + CH3 in the temperature range 1300–1700 °K , 1974 .

[11]  D. J. Mckenney,et al.  Determination of the Rate Constant of the O + H2→OH + H Reaction using Atomic Oxygen Resonance Fluorescence and the Air Afterglow Techniques , 1975 .

[12]  P. Roth,et al.  Atom‐Resonanzabsorptionsmessungen beim thermischen Zerfall von Methan hinter Stoßwellen , 1975 .

[13]  A. Dean Shock tube studies of the N2O/Ar and N2O/H2/Ar systems , 1976 .

[14]  R. Zellner,et al.  A flash photolysis study of the rate of the reaction OH + CH4 → CH3 + H2O over an extended temperature range , 1976 .

[15]  A. Dean,et al.  A shock tube study of the recombination of carbon monoxide and oxygen atoms , 1976 .

[16]  P. Tiggelen,et al.  Reaction mechanism and rate constants in lean hydrogen-nitrous oxide flames , 1977 .