Existence of nontrivial homoclinic orbits for fourth-order difference equations

We obtain a sufficient condition for the existence of nontrivial homoclinic orbits for fourth-order difference equations by using Mountain Pass Theorem, a weak convergence argument and a discrete version of Lieb's lemma.

[1]  Jianshe Yu,et al.  Multiple periodic solutions for discrete Hamiltonian systems , 2007 .

[2]  Zhiming Guo,et al.  Homoclinic orbits for second order self-adjoint difference equations , 2006 .

[3]  Yuhua Long,et al.  Subharmonic Solutions with Prescribed Minimal Period of a Discrete Forced Pendulum Equation , 2004 .

[4]  Chun-Lei Tang,et al.  Existence of a periodic solution for subquadratic second-order discrete Hamiltonian system , 2007 .

[5]  M. Glasser,et al.  Mel'nikov's function for two-dimensional mappings , 1989 .

[6]  Chun-Lei Tang,et al.  Multiple periodic solutions for superquadratic second-order discrete Hamiltonian systems , 2008, Appl. Math. Comput..

[7]  Donal O'Regan,et al.  Multiple positive solutions of singular discrete p-Laplacian problems via variational methods , 2005 .

[8]  Jianshe Yu,et al.  Existence of periodic and subharmonic solutions for second-order superlinear difference equations , 2003 .

[9]  Jianshe Yu,et al.  The Existence of Periodic and Subharmonic Solutions of Subquadratic Second Order Difference Equations , 2003 .

[10]  Michel Willem,et al.  Solitary waves with prescribed speed on infinite lattices , 1997 .

[11]  Ravi P. Agarwal,et al.  Multiple positive solutions of singular and nonsingular discrete problems via variational methods , 2004 .

[12]  Elliott H. Lieb,et al.  On the lowest eigenvalue of the Laplacian for the intersection of two domains , 1983 .

[13]  Michal Feckan,et al.  Transversal homoclinic orbits for higher dimensional difference equations , 2001 .

[14]  Michal Feckan Transversal Bounded Solutions for Difference Equations , 2002 .

[15]  Zhiming Guo,et al.  Homoclinic orbits and subharmonics for nonlinear second order difference equations , 2007 .