Fast Algorithm for Border Bases of Artinian Gorenstein Algebras

Given a multi-index sequence σ, we present a new efficient algorithm to compute generators of the linear recurrence relations between the terms of σ. We transform this problem into an algebraic one, by identifying multi-index sequences, multivariate formal power series and linear functionals on the ring of multivariate polynomials. In this setting, the recurrence relations are the elements of the kernel Iσ of the Hankel operator Hσ associated to σ. We describe the correspondence between multi-index sequences with a Hankel operator of finite rank and Artinian Gorenstein Algebras. We show how the algebraic structure of the Artinian Gorenstein algebra Aσ associated to the sequence σ yields the structure of the terms σ α for all α ∈ Nn. This structure is explicitly given by a border basis of Aσ, which is presented as a quotient of the polynomial ring K [x1, ..., xn] by the kernel Iσ of the Hankel operator Hσ. The algorithm provides generators of Iσ constituting a border basis, pairwise orthogonal bases of Aσ and the tables of multiplication by the variables in these bases. It is an extension of Berlekamp-Massey-Sakata (BMS) algorithm, with improved complexity bounds. We present applications of the method to different problems such as the decomposition of functions into weighted sums of exponential functions, sparse interpolation, fast decoding of algebraic codes, computing the vanishing ideal of points, and tensor decomposition. Some benchmarks illustrate the practical behavior of the algorithm.

[1]  J. Emsalem Géométrie des points épais , 1978 .

[2]  Tomas Sauer Prony’s method in several variables , 2017, Numerische Mathematik.

[3]  Shojiro Sakata,et al.  Finding a Minimal Set of Linear Recurring Relations Capable of Generating a Given Finite Two-Dimensional Array , 1988, J. Symb. Comput..

[4]  Annie Cuyt,et al.  How well can the concept of Padé approximant be generalized to the multivariate case , 1999 .

[5]  Richard Zippel,et al.  Interpolating Polynomials from Their Values , 1990, J. Symb. Comput..

[6]  Philipp Birken,et al.  Numerical Linear Algebra , 2011, Encyclopedia of Parallel Computing.

[7]  Claude-Pierre Jeannerod,et al.  Solving structured linear systems of large displacement rank , 2006, ACCA.

[8]  Mohamed Elkadi,et al.  Introduction à la résolution des systèmes polynomiaux , 2007 .

[9]  Elwyn R. Berlekamp Nonbinary BCH decoding (Abstr.) , 1968, IEEE Trans. Inf. Theory.

[10]  Graham H. Norton,et al.  Finding a basis for the characteristic ideal of an n-dimensional linear recurring sequence , 1990, IEEE Trans. Inf. Theory.

[11]  Ulrich von der Ohe,et al.  A multivariate generalization of Prony's method , 2015, 1506.00450.

[12]  Bernard Mourrain,et al.  Border basis representation of a general quotient algebra , 2012, ISSAC.

[13]  James L. Massey,et al.  Shift-register synthesis and BCH decoding , 1969, IEEE Trans. Inf. Theory.

[14]  Stefan Kaspar Computing border bases without using a term ordering , 2011, ArXiv.

[15]  Bernard Mourrain,et al.  Stable normal forms for polynomial system solving , 2008, Theor. Comput. Sci..

[16]  David A. Cox,et al.  Ideals, Varieties, and Algorithms , 1997 .

[17]  G. Golub,et al.  Separable nonlinear least squares: the variable projection method and its applications , 2003 .

[18]  B. Mourrain Isolated points, duality and residues , 1997 .

[19]  R. Gregory Taylor,et al.  Modern computer algebra , 2002, SIGA.

[20]  Michael Ben-Or,et al.  A deterministic algorithm for sparse multivariate polynomial interpolation , 1988, STOC '88.

[21]  Martin Kreuzer,et al.  Computing border bases , 2006 .

[22]  Jean-Charles Faugère,et al.  Linear Algebra for Computing Gröbner Bases of Linear Recursive Multidimensional Sequences , 2015, J. Symb. Comput..

[23]  A. Lee Swindlehurst,et al.  A Performance Analysis ofSubspace-Based Methods in thePresence of Model Errors { Part I : The MUSIC AlgorithmA , 1992 .

[24]  D. Potts,et al.  Parameter estimation for multivariate exponential sums , 2011 .

[25]  Bernard Mourrain,et al.  Polynomial–Exponential Decomposition From Moments , 2016, Foundations of Computational Mathematics.

[26]  Thomas Kailath,et al.  ESPRIT-estimation of signal parameters via rotational invariance techniques , 1989, IEEE Trans. Acoust. Speech Signal Process..

[27]  Stephen C. Power,et al.  Finite rank multivariable Hankel forms , 1982 .

[28]  David Y. Y. Yun,et al.  Fast Solution of Toeplitz Systems of Equations and Computation of Padé Approximants , 1980, J. Algorithms.

[29]  Bernard Mourrain,et al.  Generalized normal forms and polynomial system solving , 2005, ISSAC.

[30]  G. Beylkin,et al.  On approximation of functions by exponential sums , 2005 .

[31]  M. G. Bruin,et al.  A uniform approach for the fast computation of Matrix-type Padé approximants , 1996 .

[32]  Fredrik Andersson,et al.  Nonlinear approximation of functions in two dimensions by sums of exponential functions , 2010 .

[33]  Chris Heegard,et al.  Cyclic Codes: A Unified Theory and Algorithms for Decoding Using Grobner Bases , 1995 .

[34]  Victor Y. Pan,et al.  Multivariate Polynomials, Duality, and Structured Matrices , 2000, J. Complex..

[35]  Bernard Mourrain,et al.  A generalized flat extension theorem for moment matrices , 2009 .

[36]  Pierre Comon,et al.  General tensor decomposition, moment matrices and applications , 2013, J. Symb. Comput..

[37]  Pierre Comon,et al.  Symmetric tensor decomposition , 2009, 2009 17th European Signal Processing Conference.