Iris Recognition Using Possibilistic Fuzzy Matching on Local Features

In this paper, we propose a novel possibilistic fuzzy matching strategy with invariant properties, which can provide a robust and effective matching scheme for two sets of iris feature points. In addition, the nonlinear normalization model is adopted to provide more accurate position before matching. Moreover, an effective iris segmentation method is proposed to refine the detected inner and outer boundaries to smooth curves. For feature extraction, the Gabor filters are adopted to detect the local feature points from the segmented iris image in the Cartesian coordinate system and to generate a rotation-invariant descriptor for each detected point. After that, the proposed matching algorithm is used to compute a similarity score for two sets of feature points from a pair of iris images. The experimental results show that the performance of our system is better than those of the systems based on the local features and is comparable to those of the typical systems.

[1]  Manesh Kokare,et al.  Iris Recognition Without Iris Normalization , 2010 .

[2]  S. Umeyama,et al.  Least-Squares Estimation of Transformation Parameters Between Two Point Patterns , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[3]  J. G. Daugman High confidence personal identification by rapid video analysis of iris texture , 1992, Proceedings 1992 International Carnahan Conference on Security Technology: Crime Countermeasures.

[4]  Pengfei Shi,et al.  A Non-linear Normalization Model for Iris Recognition , 2005, IWBRS.

[5]  Hiroshi Nakajima,et al.  An Effective Approach for Iris Recognition Using Phase-Based Image Matching , 2008, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[6]  Carmen Sánchez Ávila,et al.  Two different approaches for iris recognition using Gabor filters and multiscale zero-crossing representation , 2005, Pattern Recognit..

[7]  Boualem Boashash,et al.  A human identification technique using images of the iris and wavelet transform , 1998, IEEE Trans. Signal Process..

[8]  Ching Y. Suen,et al.  Towards nonideal iris recognition based on level set method, genetic algorithms and adaptive asymmetrical SVMs , 2011, Eng. Appl. Artif. Intell..

[9]  David Zhang,et al.  The relative distance of key point based iris recognition , 2007, Pattern Recognit..

[10]  John Daugman,et al.  High Confidence Visual Recognition of Persons by a Test of Statistical Independence , 1993, IEEE Trans. Pattern Anal. Mach. Intell..

[11]  H. J. Wyatt,et al.  A ‘minimum-wear-and-tear’ meshwork for the iris , 2000, Vision Research.

[12]  Stefan Fischer,et al.  Face authentication with Gabor information on deformable graphs , 1999, IEEE Trans. Image Process..

[13]  James M. Keller,et al.  A possibilistic approach to clustering , 1993, IEEE Trans. Fuzzy Syst..

[14]  Hong Yan Convergence condition and efficient implementation of the fuzzy curve-tracing (FCT) algorithm , 2004, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[15]  Richard P. Wildes,et al.  A system for automated iris recognition , 1994, Proceedings of 1994 IEEE Workshop on Applications of Computer Vision.

[16]  Tieniu Tan,et al.  Robust Encoding of Local Ordinal Measures: A General Framework of Iris Recognition , 2004, ECCV Workshop BioAW.

[17]  B. S. Manjunath,et al.  Texture Features for Browsing and Retrieval of Image Data , 1996, IEEE Trans. Pattern Anal. Mach. Intell..

[18]  Dexin Zhang,et al.  Efficient iris recognition by characterizing key local variations , 2004, IEEE Transactions on Image Processing.

[19]  Yingzi Du,et al.  Region-based SIFT approach to iris recognition , 2009 .

[20]  Luís A. Alexandre,et al.  Introduction to the Special Issue on the Segmentation of Visible Wavelength Iris Images Captured At-a-distance and On-the-move , 2010, Image Vis. Comput..

[21]  Richard P. Wildes,et al.  A machine-vision system for iris recognition , 2005, Machine Vision and Applications.

[22]  Dexin Zhang,et al.  DCT-Based Iris Recognition , 2007, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[23]  James M. Keller,et al.  A possibilistic fuzzy c-means clustering algorithm , 2005, IEEE Transactions on Fuzzy Systems.

[24]  Jorge S. Marques A fuzzy algorithm for curve and surface alignment , 1998, Pattern Recognit. Lett..

[25]  Dexin Zhang,et al.  Local intensity variation analysis for iris recognition , 2004, Pattern Recognit..

[26]  Renbiao Wu,et al.  Iris Recognition Based on Local Feature Point Matching , 2006, 2006 International Symposium on Communications and Information Technologies.

[27]  J. Daugman Uncertainty relation for resolution in space, spatial frequency, and orientation optimized by two-dimensional visual cortical filters. , 1985, Journal of the Optical Society of America. A, Optics and image science.

[28]  Anthony J. Yezzi,et al.  Curve evolution implementation of the Mumford-Shah functional for image segmentation, denoising, interpolation, and magnification , 2001, IEEE Trans. Image Process..

[29]  Ching-Han Chen,et al.  High performance iris recognition based on LDA and LPCC , 2005, 17th IEEE International Conference on Tools with Artificial Intelligence (ICTAI'05).

[30]  Richa Singh,et al.  Improving Iris Recognition Performance Using Segmentation, Quality Enhancement, Match Score Fusion, and Indexing , 2008, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[31]  Patrick J. Flynn,et al.  Image understanding for iris biometrics: A survey , 2008, Comput. Vis. Image Underst..

[32]  Rishi Gupta,et al.  Iris Recognition System , 2010 .

[33]  Hong Yan Fuzzy curve-tracing algorithm , 2001, IEEE Trans. Syst. Man Cybern. Part B.

[34]  R. Kruse,et al.  An extension to possibilistic fuzzy cluster analysis , 2004, Fuzzy Sets Syst..

[35]  Chin-Wang Tao,et al.  Iris recognition using Gabor filters optimized by the particle swarm algorithm , 2009, J. Electronic Imaging.

[36]  Dexin Zhang,et al.  Personal Identification Based on Iris Texture Analysis , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[37]  Ashok A. Ghatol,et al.  Iris recognition: an emerging biometric technology , 2007 .

[38]  Luís A. Alexandre,et al.  UBIRIS: A Noisy Iris Image Database , 2005, ICIAP.

[39]  Chin-Wang Tao,et al.  Iris recognition based on relative variation analysis with feature selection , 2008 .

[40]  Arun Ross,et al.  Iris Segmentation Using Geodesic Active Contours , 2009, IEEE Transactions on Information Forensics and Security.