Meshless Local Petrov-Galerkin Method in Anisotropic Elasticity

A meshless method based on the local Petrov-Galerkin approach is proposed for solution of static and elastodynamic problems in a homogeneous anisotropic medium. The Heaviside step function is used as the test functions in the local weak form. It is leading to derive local boundary integral equations (LBIEs). For transient elastodynamic problems the Laplace transfor technique is applied and the LBIEs are given in the Laplace transform domain. The analyzed domain is covered by small subdomains with a simple geometry such as circles in 2-d problems. The final form of local integral equations has a pure contour character only in elastostatics. In elastodynamics an additional domain integral is involved due to inertia terms. The moving least square (MLS) method is used for approximation of physical quantities in LBIEs. keyword: meshless method, local weak form, Heaviside step function, moving least squares interpolation, Laplace transform

[1]  J. Domínguez Boundary elements in dynamics , 1993 .

[2]  E. L. Albuquerque,et al.  The boundary element method applied to time dependent problems in anisotropic materials , 2002 .

[3]  T. Cruse,et al.  Boundary-integral equation analysis of cracked anisotropic plates , 1975 .

[4]  Ernian Pan,et al.  Fracture mechanics analysis of cracked 2-D anisotropic media with a new formulation of the boundary element method , 1996 .

[5]  S. Atluri,et al.  The Meshless Local Petrov-Galerkin (MLPG) Method: A Simple \& Less-costly Alternative to the Finite Element and Boundary Element Methods , 2002 .

[6]  M. Aliabadi,et al.  A Galerkin boundary element formulation with dual reciprocity for elastodynamics , 2000 .

[7]  P. C. Dumir,et al.  Boundary element solution for elastic orthotropic half-plane problems , 1987 .

[8]  S. Atluri,et al.  Meshless Local Petrov-Galerkin (MLPG) Approaches for Solving the Weakly-Singular Traction {\&} Displacement Boundary Integral Equations , 2003 .

[9]  D. Clements,et al.  A boundary integral equation method for a class of crack problems in anisotropic elasticity , 1983 .

[10]  T. Cruse,et al.  Interactive Program for Analysis and Design Problems in Advanced Composites Technology , 1971 .

[11]  T. Belytschko,et al.  Element‐free Galerkin methods , 1994 .

[12]  S. G. Lekhnit︠s︡kiĭ Theory of elasticity of an anisotropic body , 1981 .

[13]  Satya N. Atluri,et al.  The local boundary integral equation (LBIE) and it's meshless implementation for linear elasticity , 2000 .

[14]  H. Antes,et al.  Application of ‘Operational Quadrature Methods’ in Time Domain Boundary Element Methods , 1997 .

[15]  F. Afagh,et al.  TREATMENT OF BODY-FORCE VOLUME INTEGRALS IN BEM BY EXACT TRANSFORMATION FOR 2-D ANISOTROPIC ELASTICITY , 1997 .

[16]  C. Brebbia,et al.  A new approach to free vibration analysis using boundary elements , 1983 .

[17]  J. Sládek,et al.  APPLICATION OF MESHLESS LOCAL PETROV-GALERKIN (MLPG) METHOD TO ELASTO-DYNAMIC PROBLEMS IN CONTINUOUSLY NONHOMOGENEOUS SOLIDS , 2003 .

[18]  J. Bernard Minster,et al.  A numerical boundary integral equation method for elastodynamics. I , 1978 .

[19]  J. Sládek,et al.  Meshless local boundary integral equation method for 2D elastodynamic problems , 2003 .

[20]  Sergey E. Mikhailov,et al.  Localized boundary-domain integral formulations for problems with variable coefficients , 2002 .

[21]  W. Ang,et al.  A numerical Green's function for multiple cracks in anisotropic bodies , 2004 .

[22]  J. Achenbach,et al.  Two-dimensional time domain BEM for scattering of elastic waves in solids of general anisotropy , 1996 .

[23]  V. Sladek,et al.  Local boundary integral equation (LBIE) method for solving problems of elasticity with nonhomogeneous material properties , 2000 .

[24]  S. Atluri,et al.  The meshless local Petrov-Galerkin (MLPG) method , 2002 .

[25]  N. A. Schclar Anisotropic Analysis Using Boundary Elements , 1994 .

[26]  Bernard Amadei,et al.  2-D BEM analysis of anisotropic half-plane problems—application to rock mechanics , 1998 .

[27]  Mark A Fleming,et al.  Meshless methods: An overview and recent developments , 1996 .

[28]  L. Gaul,et al.  A 3-D Boundary Element Method for Dynamic Analysis of Anisotropic Elastic Solids , 2000 .

[29]  H. Redkey,et al.  A new approach. , 1967, Rehabilitation record.

[30]  John C. Houbolt,et al.  A Recurrence Matrix Solution for the Dynamic Response of Elastic Aircraft , 1950 .

[31]  J. Sládek,et al.  Transient elastodynamic three-dimensional problems in cracked bodies , 1984 .

[32]  M. H. Aliabadi,et al.  Fracture mechanics analysis of anisotropic plates by the boundary element method , 1993 .

[33]  S. Atluri The Meshless Local Petrov-Galerkin (MLPG) Method for Domain & BIE Discretizations , 2003 .

[34]  J. D. Eshelby,et al.  Anisotropic elasticity with applications to dislocation theory , 1953 .

[35]  E. Pan A BEM analysis of fracture mechanics in 2D anisotropic piezoelectric solids , 1999 .

[36]  S. Atluri,et al.  A local boundary integral equation (LBIE) method in computational mechanics, and a meshless discretization approach , 1998 .