Computational Cardiovascular Analysis with the Variational Multiscale Methods and Isogeometric Discretization

Computational cardiovascular analysis can provide valuable information to cardiologists and cardiovascular surgeons on a patient-specific basis. There are many computational challenges that need to be faced in this class of flow analyses. They include highly unsteady flows, complex cardiovascular geometries, moving boundaries and interfaces, such as the motion of the heart valve leaflets, contact between moving solid surfaces, such as the contact between the leaflets, and the fluid–structure interaction between blood and cardiovascular structure. Many of these challenges have been or are being addressed by the Space–Time Variational Multiscale (ST-VMS) method, the Arbitrary Lagrangian–Eulerian VMS (ALE-VMS) method, and VMS-based immersogeometric analysis (IMGA-VMS), which serve as the core computational methods, and other special methods used in combination with them. We provide an overview of these methods and present examples of challenging computations carried out with them, including aortic and heart valve flow analyses. We also point out that these methods are general computational fluid dynamics techniques and have broad applicability to a wide range of other areas of science and engineering.

[1]  Hitoshi Hattori,et al.  Space–time VMS method for flow computations with slip interfaces (ST-SI) , 2015 .

[2]  T. Hughes,et al.  Isogeometric analysis : CAD, finite elements, NURBS, exact geometry and mesh refinement , 2005 .

[3]  Yuri Bazilevs,et al.  3D simulation of wind turbine rotors at full scale. Part I: Geometry modeling and aerodynamics , 2011 .

[4]  A. Korobenko,et al.  FSI modeling of a propulsion system based on compliant hydrofoils in a tandem configuration , 2016 .

[5]  Marco S. Pigazzini,et al.  Optimizing fluid–structure interaction systems with immersogeometric analysis and surrogate modeling: Application to a hydraulic arresting gear , 2017 .

[6]  T. Hughes,et al.  Isogeometric Fluid–structure Interaction Analysis with Applications to Arterial Blood Flow , 2006 .

[7]  Kenji Takizawa,et al.  Space–time computational analysis of MAV flapping-wing aerodynamics with wing clapping , 2015 .

[8]  Tayfun E. Tezduyar,et al.  Turbocharger turbine and exhaust manifold flow computation with the Space–Time Variational Multiscale Method and Isogeometric Analysis , 2019, Computers & Fluids.

[9]  Yuri Bazilevs,et al.  Dynamic and fluid–structure interaction simulations of bioprosthetic heart valves using parametric design with T-splines and Fung-type material models , 2015, Computational mechanics.

[10]  Tayfun E. Tezduyar,et al.  Heart valve flow computation with the integrated Space–Time VMS, Slip Interface, Topology Change and Isogeometric Discretization methods , 2017 .

[11]  Tayfun E. Tezduyar,et al.  Patient-specific computational analysis of the influence of a stent on the unsteady flow in cerebral aneurysms , 2013 .

[12]  Tayfun E. Tezduyar,et al.  FSI modeling of the Orion spacecraft drogue parachutes , 2015 .

[13]  Toshio Kobayashi,et al.  Computer modeling of cardiovascular fluid-structure interactions with the deforming-spatial-domain/stabilized space-time formulation , 2006 .

[14]  Yuri Bazilevs,et al.  Numerical-performance studies for the stabilized space–time computation of wind-turbine rotor aerodynamics , 2011 .

[15]  John A. Evans,et al.  Stability and Conservation Properties of Collocated Constraints in Immersogeometric Fluid-Thin Structure Interaction Analysis , 2015 .

[16]  Tayfun E. Tezduyar,et al.  Tire aerodynamics with actual tire geometry, road contact and tire deformation , 2018, Computational Mechanics.

[17]  Tayfun E. Tezduyar,et al.  Space–time VMS computation of wind-turbine rotor and tower aerodynamics , 2014 .

[18]  Tayfun E. Tezduyar,et al.  Stabilization and discontinuity-capturing parameters for space–time flow computations with finite element and isogeometric discretizations , 2018 .

[19]  David Kamensky,et al.  Immersogeometric Analysis of Bioprosthetic Heart Valves, Using the Dynamic Augmented Lagrangian Method , 2018 .

[20]  Yuri Bazilevs,et al.  Isogeometric divergence-conforming variational multiscale formulation of incompressible turbulent flows , 2017 .

[21]  Tayfun E. Tezduyar,et al.  Compressible-flow geometric-porosity modeling and spacecraft parachute computation with isogeometric discretization , 2018, Computational Mechanics.

[22]  Tayfun E. Tezduyar,et al.  Medical-image-based aorta modeling with zero-stress-state estimation , 2019, Computational Mechanics.

[23]  T. Tezduyar,et al.  Stabilized space–time computation of wind-turbine rotor aerodynamics , 2011 .

[24]  T. Tezduyar Computation of moving boundaries and interfaces and stabilization parameters , 2003 .

[25]  Giancarlo Sangalli,et al.  Variational Multiscale Analysis: the Fine-scale Green's Function, Projection, Optimization, Localization, and Stabilized Methods , 2007, SIAM J. Numer. Anal..

[26]  Tayfun E. Tezduyar,et al.  Space–time computations in practical engineering applications: a summary of the 25-year history , 2018, Computational Mechanics.

[27]  A. Korobenko,et al.  Computer Modeling of Wind Turbines: 1. ALE-VMS and ST-VMS Aerodynamic and FSI Analysis , 2018, Archives of Computational Methods in Engineering.

[28]  Hitoshi Hattori,et al.  Turbocharger flow computations with the Space-Time Isogeometric Analysis (ST-IGA) , 2017 .

[29]  John A. Evans,et al.  Immersogeometric cardiovascular fluid-structure interaction analysis with divergence-conforming B-splines. , 2017, Computer methods in applied mechanics and engineering.

[30]  Josef Kiendl,et al.  An anisotropic constitutive model for immersogeometric fluid-structure interaction analysis of bioprosthetic heart valves. , 2018, Journal of biomechanics.

[31]  Ferdinando Auricchio,et al.  A framework for designing patient‐specific bioprosthetic heart valves using immersogeometric fluid–structure interaction analysis , 2018, International journal for numerical methods in biomedical engineering.

[32]  Tayfun E. Tezduyar,et al.  Space–time Isogeometric flow analysis with built-in Reynolds-equation limit , 2019, Mathematical Models and Methods in Applied Sciences.

[33]  Thomas J. R. Hughes,et al.  Weak imposition of Dirichlet boundary conditions in fluid mechanics , 2007 .

[34]  Michael C. H. Wu,et al.  Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials , 2015 .

[35]  S. Mittal,et al.  Computation of unsteady incompressible flows with the stabilized finite element methods: Space-time formulations, iterative strategies and massively parallel implementations , 1992 .

[36]  Tayfun E. Tezduyar,et al.  Ram-air parachute structural and fluid mechanics computations with the Space-Time Isogeometric Analysis (ST-IGA) , 2016 .

[37]  Yuri Bazilevs,et al.  Isogeometric Modeling and Experimental Investigation of Moving-Domain Bridge Aerodynamics , 2019, Journal of Engineering Mechanics.

[38]  Kenji Takizawa,et al.  Computational thermo-fluid analysis of a disk brake , 2016 .

[39]  Xiaowei Deng,et al.  Free-surface flow modeling and simulation of horizontal-axis tidal-stream turbines , 2017 .

[40]  Kenji Takizawa,et al.  ST and ALE-VMS methods for patient-specific cardiovascular fluid mechanics modeling , 2014 .

[41]  M. Wheeler An Elliptic Collocation-Finite Element Method with Interior Penalties , 1978 .

[42]  Wing Kam Liu,et al.  Lagrangian-Eulerian finite element formulation for incompressible viscous flows☆ , 1981 .

[43]  Tayfun E. Tezduyar,et al.  Massively parallel finite element simulation Of compressible and incompressible flows , 1994 .

[44]  Thomas J. R. Hughes,et al.  Patient-specific isogeometric fluid–structure interaction analysis of thoracic aortic blood flow due to implantation of the Jarvik 2000 left ventricular assist device , 2009 .

[45]  Tayfun E. Tezduyar,et al.  Mesh refinement influence and cardiac-cycle flow periodicity in aorta flow analysis with isogeometric discretization , 2019, Computers & Fluids.

[46]  Claes Johnson,et al.  Finite element methods for linear hyperbolic problems , 1984 .

[47]  Yuri Bazilevs,et al.  Computational Fluid-Structure Interaction: Methods and Applications , 2013 .

[48]  Tayfun E. Tezduyar,et al.  Space-Time Computational Techniques for the Aerodynamics of Flapping Wings , 2012 .

[49]  Tayfun E. Tezduyar,et al.  Modelling of fluid–structure interactions with the space–time finite elements: Arterial fluid mechanics , 2007 .

[50]  Kenji Takizawa,et al.  Space–time interface-tracking with topology change (ST-TC) , 2014 .

[51]  T. Hughes,et al.  The variational multiscale method—a paradigm for computational mechanics , 1998 .

[52]  Yuri Bazilevs,et al.  Blood vessel tissue prestress modeling for vascular fluid-structure interaction simulation , 2011 .

[53]  A. Korobenko,et al.  Computational free-surface fluid–structure interaction with application to floating offshore wind turbines , 2016 .

[54]  Kenji Takizawa,et al.  Space–time fluid–structure interaction modeling of patient‐specific cerebral aneurysms , 2011 .

[55]  Tayfun E. Tezduyar,et al.  Space–time techniques for computational aerodynamics modeling of flapping wings of an actual locust , 2012 .

[56]  Tayfan E. Tezduyar,et al.  Stabilized Finite Element Formulations for Incompressible Flow Computations , 1991 .

[57]  A. Marsden,et al.  A comparison of outlet boundary treatments for prevention of backflow divergence with relevance to blood flow simulations , 2011 .

[58]  Anindya Ghoshal,et al.  Compressible flows on moving domains: Stabilized methods, weakly enforced essential boundary conditions, sliding interfaces, and application to gas-turbine modeling , 2017 .

[59]  T. Hughes,et al.  Isogeometric fluid-structure interaction: theory, algorithms, and computations , 2008 .

[60]  Marek Behr,et al.  Parallel finite-element computation of 3D flows , 1993, Computer.

[61]  Thomas J. R. Hughes,et al.  Finite element modeling of blood flow in arteries , 1998 .

[62]  T. Tezduyar,et al.  Space–time computation techniques with continuous representation in time (ST-C) , 2014 .

[63]  Yuri Bazilevs,et al.  Toward free-surface modeling of planing vessels: simulation of the Fridsma hull using ALE-VMS , 2012 .

[64]  Tayfun E. Tezduyar,et al.  METHODS FOR FSI MODELING OF SPACECRAFT PARACHUTE DYNAMICS AND COVER SEPARATION , 2013 .

[65]  Yuri Bazilevs,et al.  Engineering Analysis and Design with ALE-VMS and Space–Time Methods , 2014 .

[66]  A. Korobenko,et al.  A new variational multiscale formulation for stratified incompressible turbulent flows , 2017 .

[67]  Thomas J. R. Hughes,et al.  Fluid–structure interaction analysis of bioprosthetic heart valves: significance of arterial wall deformation , 2014, Computational Mechanics.

[68]  Tayfun E. Tezduyar,et al.  Multiscale space-time methods for thermo-fluid analysis of a ground vehicle and its tires , 2015 .

[69]  Anindya Ghoshal,et al.  An interactive geometry modeling and parametric design platform for isogeometric analysis , 2015, Comput. Math. Appl..

[70]  TakizawaKenji Computational engineering analysis with the new-generation space---time methods , 2014 .

[71]  Paul Houston,et al.  Discontinuous hp-Finite Element Methods for Advection-Diffusion-Reaction Problems , 2001, SIAM J. Numer. Anal..

[72]  Victor M. Calo,et al.  YZβ discontinuity capturing for advection‐dominated processes with application to arterial drug delivery , 2007 .

[73]  Victor M. Calo,et al.  Improving stability of stabilized and multiscale formulations in flow simulations at small time steps , 2010 .

[74]  T. Tezduyar,et al.  A parallel 3D computational method for fluid-structure interactions in parachute systems , 2000 .

[75]  Thomas J. R. Hughes,et al.  NURBS-based isogeometric analysis for the computation of flows about rotating components , 2008 .

[76]  Tayfun E. Tezduyar,et al.  Space–time finite element computation of complex fluid–structure interactions , 2010 .

[77]  Xiao Yun Xu,et al.  Coronary arterial dynamics computation with medical-image-based time-dependent anatomical models and element-based zero-stress state estimates , 2014 .

[78]  Tayfun E. Tezduyar,et al.  Space–Time method for flow computations with slip interfaces and topology changes (ST-SI-TC) , 2016 .

[79]  Yuri Bazilevs,et al.  An immersogeometric variational framework for fluid-structure interaction: application to bioprosthetic heart valves. , 2015, Computer methods in applied mechanics and engineering.

[80]  T. Hughes,et al.  Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations , 1990 .

[81]  C D Murray,et al.  The Physiological Principle of Minimum Work: I. The Vascular System and the Cost of Blood Volume. , 1926, Proceedings of the National Academy of Sciences of the United States of America.

[82]  Tayfun E. Tezduyar,et al.  Computational Methods for Parachute Fluid–Structure Interactions , 2012 .

[83]  Ming-Chen Hsu,et al.  Computational vascular fluid–structure interaction: methodology and application to cerebral aneurysms , 2010, Biomechanics and modeling in mechanobiology.

[84]  Tayfun E. Tezduyar,et al.  Isogeometric hyperelastic shell analysis with out-of-plane deformation mapping , 2018, Computational Mechanics.

[85]  Tayfun E. Tezduyar,et al.  Methods for computation of flow-driven string dynamics in a pump and residence time , 2019, Mathematical Models and Methods in Applied Sciences.

[86]  A. Korobenko,et al.  Fluid–Structure Interaction Modeling for Fatigue-Damage Prediction in Full-Scale Wind-Turbine Blades , 2016 .

[87]  Tayfun E. Tezduyar,et al.  Stabilization and shock-capturing parameters in SUPG formulation of compressible flows , 2004 .

[88]  Tayfun E. Tezduyar,et al.  Porosity models and computational methods for compressible-flow aerodynamics of parachutes with geometric porosity , 2017 .

[89]  Tayfun E. Tezduyar,et al.  Modelling of fluid–structure interactions with the space–time finite elements: Solution techniques , 2007 .

[90]  T. Hughes,et al.  Variational multiscale residual-based turbulence modeling for large eddy simulation of incompressible flows , 2007 .

[91]  Tayfun E. Tezduyar,et al.  Multiscale space–time fluid–structure interaction techniques , 2011 .

[92]  Tayfun E. Tezduyar,et al.  A stabilized ALE method for computational fluid-structure interaction analysis of passive morphing in turbomachinery , 2019 .

[93]  Tayfun E. Tezduyar,et al.  Sequentially-coupled space–time FSI analysis of bio-inspired flapping-wing aerodynamics of an MAV , 2014 .

[94]  T. Hughes Multiscale phenomena: Green's functions, the Dirichlet-to-Neumann formulation, subgrid scale models, bubbles and the origins of stabilized methods , 1995 .

[95]  Tayfun E. Tezduyar,et al.  Space–time VMS computational flow analysis with isogeometric discretization and a general-purpose NURBS mesh generation method , 2017 .

[96]  Tayfun E. Tezduyar,et al.  A General-Purpose NURBS Mesh Generation Method for Complex Geometries , 2018 .