Selective refinement: A new strategy for automatic node placement in graded triangular meshes

[1]  R. E. Miles On the homogeneous planar Poisson point process , 1970 .

[2]  J. Cavendish Automatic triangulation of arbitrary planar domains for the finite element method , 1974 .

[3]  C. Lawson Software for C1 Surface Interpolation , 1977 .

[4]  J. M. Nelson A triangulation algorithm for arbitrary planar domains , 1978 .

[5]  Robin Sibson,et al.  Locally Equiangular Triangulations , 1978, Comput. J..

[6]  Edward A. Sadek,et al.  A scheme for the automatic generation of triangular finite elements , 1980 .

[7]  D. F. Watson Computing the n-Dimensional Delaunay Tesselation with Application to Voronoi Polytopes , 1981, Comput. J..

[8]  Robert J. Renka,et al.  A Storage-efficient Method for Construction of a Thiessen Triangulation , 1982 .

[9]  A. Bykat,et al.  Design of a recursive, shape controlling mesh generator , 1983 .

[10]  Mark Yerry,et al.  A Modified Quadtree Approach To Finite Element Mesh Generation , 1983, IEEE Computer Graphics and Applications.

[11]  M. Rivara Algorithms for refining triangular grids suitable for adaptive and multigrid techniques , 1984 .

[12]  María Cecilia Rivara,et al.  Design and data structure of fully adaptive, multigrid, finite-element software , 1984, ACM Trans. Math. Softw..

[13]  William H. Frey,et al.  An apporach to automatic three‐dimensional finite element mesh generation , 1985 .

[14]  M. E. Botkin An adaptive finite element technique for plate structures , 1985 .

[15]  S. Lo A NEW MESH GENERATION SCHEME FOR ARBITRARY PLANAR DOMAINS , 1985 .

[16]  B. Joe Delaunay Triangular Meshes in Convex Polygons , 1986 .

[17]  R. B. Simpson,et al.  Triangular meshes for regions of complicated shape , 1986 .