A novel multiphase MPS algorithm for modeling crust formation by highly viscous fluid for simulating corium spreading

[1]  S. Koshizuka,et al.  The truncation and stabilization error in multiphase moving particle semi-implicit method based on corrective matrix: Which is dominant? , 2019, Computers & Fluids.

[2]  Bin Chen,et al.  An accurate and stable multiphase moving particle semi‐implicit method based on a corrective matrix for all particle interaction models , 2018, International Journal for Numerical Methods in Engineering.

[3]  Y. Ohishi,et al.  Investigation on influence of crust formation on VULCANO VE-U7 corium spreading with MPS method , 2017 .

[4]  Bin Chen,et al.  A multiphase MPS solver for modeling multi-fluid interaction with free surface and its application in oil spill , 2017 .

[5]  Seiichi Koshizuka,et al.  Stable multiphase moving particle semi-implicit method for incompressible interfacial flow , 2017 .

[6]  Hitoshi Gotoh,et al.  Comparative study on accuracy and conservation properties of two particle regularization schemes and proposal of an optimized particle shifting scheme in ISPH context , 2017, J. Comput. Phys..

[7]  M. T. Farmer,et al.  Status Report on Ex-Vessel Coolability and Water Management , 2016 .

[8]  Ming Liu,et al.  Numerical investigation of erosion and heat transfer characteristics of molten jet impinging onto solid plate with MPS–LES method , 2016 .

[9]  Bin Chen,et al.  A contoured continuum surface force model for particle methods , 2015, J. Comput. Phys..

[10]  Bin Chen,et al.  Comparison of parallel solvers for Moving Particle Semi-Implicit method , 2015 .

[11]  Y. Oka,et al.  Numerical simulation of the SURC-2 and SURC-4 MCCI experiments by MPS method , 2014 .

[12]  Guang Xi,et al.  Improving stability of MPS method by a computational scheme based on conceptual particles , 2014 .

[13]  Seiichi Koshizuka,et al.  Least squares moving particle semi-implicit method , 2014, Computational Particle Mechanics.

[14]  Guangtao Duan,et al.  Stability and accuracy analysis for viscous flow simulation by the moving particle semi-implicit method , 2013 .

[15]  Hitoshi Gotoh,et al.  Enhancement of performance and stability of MPS mesh-free particle method for multiphase flows characterized by high density ratios , 2013, J. Comput. Phys..

[16]  Nikolaus A. Adams,et al.  A transport-velocity formulation for smoothed particle hydrodynamics , 2013, J. Comput. Phys..

[17]  Y. Oka,et al.  Ex-vessel molten core solidification behavior by moving particle semi-implicit method , 2012 .

[18]  Mikio Sakai,et al.  Numerical modeling on the discharged fluid flow from a glass melter by a Lagrangian approach , 2012 .

[19]  Seiichi Koshizuka,et al.  Improvement of stability in moving particle semi‐implicit method , 2011 .

[20]  Moo-Hyun Kim,et al.  Step-by-step improvement of MPS method in simulating violent free-surface motions and impact-loads , 2011 .

[21]  Paul W. Cleary,et al.  Extension of SPH to predict feeding, freezing and defect creation in low pressure die casting , 2010 .

[22]  Masayuki Tanaka,et al.  Stabilization and smoothing of pressure in MPS method by Quasi-Compressibility , 2010, J. Comput. Phys..

[23]  Jing Ding,et al.  Solidification and melting behaviors and characteristics of molten salt in cold filling pipe , 2010 .

[24]  Rui Xu,et al.  Accuracy and stability in incompressible SPH (ISPH) based on the projection method and a new approach , 2009, J. Comput. Phys..

[25]  Mikhail J. Shashkov,et al.  Reconstruction of multi-material interfaces from moment data , 2008, J. Comput. Phys..

[26]  Lili Zheng,et al.  Application of Smoothed Particle Hydrodynamics Method to Free Surface and Solidification Problems , 2007 .

[27]  J. Haquet,et al.  The VULCANO VE-U7 Corium spreading benchmark , 2006 .

[28]  J. Monaghan,et al.  Solidification using smoothed particle hydrodynamics , 2005 .

[29]  Manfred Fischer,et al.  The severe accident mitigation concept and the design measures for core melt retention of the European Pressurized Reactor (EPR) , 2004 .

[30]  C. Brayer,et al.  Ex-vessel corium spreading: results from the VULCANO spreading tests , 2003 .

[31]  Jie Shen,et al.  Velocity-Correction Projection Methods for Incompressible Flows , 2003, SIAM J. Numer. Anal..

[32]  W. Häfner,et al.  Investigations on the phenomenology of ex-vessel core melt behaviour (COMAS) , 2001 .

[33]  G. Cognet,et al.  Corium Spreading and Coolability (CSC Project) , 2001 .

[34]  Seiichi KOSHIZUKA,et al.  Numerical Analysis of Jet Injection Behavior for Fuel-Coolant Interaction using Particle Method , 2001 .

[35]  Christophe Journeau,et al.  Viscosity models for corium melts , 2001 .

[36]  B. R. Sehgal,et al.  Core melt spreading on a reactor containment floor , 2000 .

[37]  S. Cummins,et al.  An SPH Projection Method , 1999 .

[38]  Ralf Wittmaack,et al.  Corflow: A Code for the Numerical Simulation of Free-Surface Flow , 1997 .

[39]  S. Koshizuka,et al.  Moving-Particle Semi-Implicit Method for Fragmentation of Incompressible Fluid , 1996 .

[40]  S. Osher,et al.  A level set approach for computing solutions to incompressible two-phase flow , 1994 .

[41]  T. G. Theofanous,et al.  The probability of Mark-I containment failure by melt-attack of the liner , 1993 .

[42]  G. Tryggvason,et al.  A front-tracking method for viscous, incompressible, multi-fluid flows , 1992 .

[43]  C. W. Hirt,et al.  Volume of fluid (VOF) method for the dynamics of free boundaries , 1981 .

[44]  C. K. Thornhill,et al.  Part IV. An experimental study of the collapse of liquid columns on a rigid horizontal plane , 1952, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.