Sperm whale algorithm: An effective metaheuristic algorithm for production optimization problems

Abstract A new optimization algorithm called sperm whale algorithm (SWA) is proposed to solve production optimization problems. This algorithm is based on the sperm whale's lifestyle. Like other population-based algorithms, SWA uses a population of solutions to find the optimum answer. One of the advantages of this method over others is that it uses two contradictory types of answers: it uses the worst and the best answers to reach the optimum point. The SWA algorithm was tested on 26 benchmarks and three benchmarks in several dimensions and one production optimization problem. The results and comparison of its performance with other algorithms show that SWA's performance is superior to other algorithms and it could be confidently used in optimization tasks.

[1]  Zong Woo Geem,et al.  A New Heuristic Optimization Algorithm: Harmony Search , 2001, Simul..

[2]  P. Hansen,et al.  Variable neighbourhood search: methods and applications , 2010, Ann. Oper. Res..

[3]  C. D. Gelatt,et al.  Optimization by Simulated Annealing , 1983, Science.

[4]  Dervis Karaboga,et al.  AN IDEA BASED ON HONEY BEE SWARM FOR NUMERICAL OPTIMIZATION , 2005 .

[5]  Robert Hooke,et al.  `` Direct Search'' Solution of Numerical and Statistical Problems , 1961, JACM.

[6]  Riccardo Poli,et al.  Particle swarm optimization , 1995, Swarm Intelligence.

[7]  J. A. Lozano,et al.  Estimation of Distribution Algorithms: A New Tool for Evolutionary Computation , 2001 .

[8]  Abdullah Alsheddy,et al.  Empowerment Scheduling: A Multi-objective Optimization Approach Using Guided Local Search , 2011 .

[9]  Min-Yuan Cheng,et al.  Symbiotic Organisms Search: A new metaheuristic optimization algorithm , 2014 .

[10]  Rainer Storn,et al.  Differential Evolution – A Simple and Efficient Heuristic for global Optimization over Continuous Spaces , 1997, J. Glob. Optim..

[11]  M. Clarke,et al.  The diet of sperm whales (Physeter macrocephalus Linnaeus 1758) off the Azores. , 1993, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[12]  Min-Yuan Cheng,et al.  Hybrid Artificial Intelligence–Based PBA for Benchmark Functions and Facility Layout Design Optimization , 2012 .

[13]  Kurt M. Fristrup,et al.  HOW DO SPERM WHALES CATCH SQUIDS , 2002 .

[14]  Amir Hossein Alavi,et al.  Krill herd: A new bio-inspired optimization algorithm , 2012 .

[15]  H. Oelschläger,et al.  Ontogenesis of the sperm whale brain , 1998, The Journal of comparative neurology.

[16]  Gade Pandu Rangaiah,et al.  Stochastic global optimization : techniques and applications in chemical engineering , 2010 .

[17]  D. Karaboga,et al.  On the performance of artificial bee colony (ABC) algorithm , 2008, Appl. Soft Comput..

[18]  Patrick Siarry,et al.  A survey on optimization metaheuristics , 2013, Inf. Sci..

[19]  Tamer Ölmez,et al.  A new metaheuristic for numerical function optimization: Vortex Search algorithm , 2015, Inf. Sci..

[20]  Susan J. Chivers,et al.  Killer Whale Predation on Sperm Whales: Observations and Implications , 2001 .

[21]  Q. Henry Wu,et al.  Group Search Optimizer: An Optimization Algorithm Inspired by Animal Searching Behavior , 2009, IEEE Transactions on Evolutionary Computation.

[22]  Fred W. Glover,et al.  Future paths for integer programming and links to artificial intelligence , 1986, Comput. Oper. Res..

[23]  Dervis Karaboga,et al.  A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm , 2007, J. Glob. Optim..

[24]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[25]  Ali Husseinzadeh Kashan,et al.  A new metaheuristic for optimization: Optics inspired optimization (OIO) , 2015, Comput. Oper. Res..

[26]  T. Stützle,et al.  Iterated Local Search: Framework and Applications , 2018, Handbook of Metaheuristics.

[27]  C. Lockyer,et al.  Estimates of growth and energy budget for the sperm whale, Physeter catodon , 1981 .

[28]  Ali Husseinzadeh Kashan,et al.  League Championship Algorithm: A New Algorithm for Numerical Function Optimization , 2009, 2009 International Conference of Soft Computing and Pattern Recognition.

[29]  Dervis Karaboga,et al.  A comparative study of Artificial Bee Colony algorithm , 2009, Appl. Math. Comput..

[30]  Mahmoud Reza Pishvaie,et al.  APPLICATION OF GENETIC ALGORITHM FOR OPTIMIZATION OF SEPARATOR PRESSURES IN MULTISTAGE PRODUCTION UNITS , 2014 .

[31]  Marco Dorigo Ant colony optimization , 2004, Scholarpedia.

[32]  K. Deb An Efficient Constraint Handling Method for Genetic Algorithms , 2000 .

[33]  Ehsan Khamehchi,et al.  A robust model for computing pressure drop in vertical multiphase flow , 2015 .

[34]  Hamid Salimi,et al.  Stochastic Fractal Search: A powerful metaheuristic algorithm , 2015, Knowl. Based Syst..

[35]  Ehsan Khamehchi,et al.  The Use of Optimization Procedures to Estimate Minimum Miscibility Pressure , 2014 .

[36]  A. Ebrahimi,et al.  Developing a novel workflow for natural gas lift optimization using advanced support vector machine , 2016 .

[37]  Bernd Würsig,et al.  Encyclopedia of Marine Mammals , 2001 .

[38]  E. Khamehchi,et al.  History matching using traditional and finite size ensemble Kalman filter , 2015 .

[39]  Amir Hossein Gandomi,et al.  Cuckoo search algorithm: a metaheuristic approach to solve structural optimization problems , 2011, Engineering with Computers.

[40]  Jakob Tougaard,et al.  Anatomy of the eye of the sperm whale ( Physeter macrocephalus L.) , 2003 .

[41]  N. Garc'ia-Pedrajas,et al.  CIXL2: A Crossover Operator for Evolutionary Algorithms Based on Population Features , 2005, J. Artif. Intell. Res..

[42]  Xin-She Yang,et al.  Nature-Inspired Metaheuristic Algorithms , 2008 .

[43]  Bilal Alatas,et al.  A novel chemistry based metaheuristic optimization method for mining of classification rules , 2012, Expert Syst. Appl..

[44]  Kevin M. Passino,et al.  Biomimicry of bacterial foraging for distributed optimization and control , 2002 .