Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations

[1]  Risi Kondor,et al.  N-body Networks: a Covariant Hierarchical Neural Network Architecture for Learning Atomic Potentials , 2018, ArXiv.

[2]  Petros Koumoutsakos,et al.  Data-driven forecasting of high-dimensional chaotic systems with long short-term memory networks , 2018, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[3]  Risi Kondor,et al.  On the Generalization of Equivariance and Convolution in Neural Networks to the Action of Compact Groups , 2018, ICML.

[4]  Ilias Bilionis,et al.  Deep UQ: Learning deep neural network surrogate models for high dimensional uncertainty quantification , 2018, J. Comput. Phys..

[5]  Nicholas Zabaras,et al.  Bayesian Deep Convolutional Encoder-Decoder Networks for Surrogate Modeling and Uncertainty Quantification , 2018, J. Comput. Phys..

[6]  Alexandre M. Tartakovsky,et al.  Solving differential equations with unknown constitutive relations as recurrent neural networks , 2017, ArXiv.

[7]  George E. Karniadakis,et al.  Hidden physics models: Machine learning of nonlinear partial differential equations , 2017, J. Comput. Phys..

[8]  Paris Perdikaris,et al.  Numerical Gaussian Processes for Time-Dependent and Nonlinear Partial Differential Equations , 2017, SIAM J. Sci. Comput..

[9]  Naftali Tishby,et al.  Opening the Black Box of Deep Neural Networks via Information , 2017, ArXiv.

[10]  Julia Ling,et al.  Physics-informed machine learning approach for augmenting turbulence models: A comprehensive framework , 2017, Physical Review Fluids.

[11]  Paris Perdikaris,et al.  Machine learning of linear differential equations using Gaussian processes , 2017, J. Comput. Phys..

[12]  J. Templeton,et al.  Reynolds averaged turbulence modelling using deep neural networks with embedded invariance , 2016, Journal of Fluid Mechanics.

[13]  Steven L. Brunton,et al.  Data-driven discovery of partial differential equations , 2016, Science Advances.

[14]  Max Tegmark,et al.  Why Does Deep and Cheap Learning Work So Well? , 2016, Journal of Statistical Physics.

[15]  Paris Perdikaris,et al.  Inferring solutions of differential equations using noisy multi-fidelity data , 2016, J. Comput. Phys..

[16]  Daniele Venturi,et al.  Multifidelity Information Fusion Algorithms for High-Dimensional Systems and Massive Data sets , 2016, SIAM J. Sci. Comput..

[17]  Stéphane Mallat,et al.  Wavelet Scattering Regression of Quantum Chemical Energies , 2016, Multiscale Model. Simul..

[18]  Martín Abadi,et al.  TensorFlow: Large-Scale Machine Learning on Heterogeneous Distributed Systems , 2016, ArXiv.

[19]  Stéphane Mallat,et al.  Understanding deep convolutional networks , 2016, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[20]  Karthik Duraisamy,et al.  A paradigm for data-driven predictive modeling using field inversion and machine learning , 2016, J. Comput. Phys..

[21]  Joshua B. Tenenbaum,et al.  Human-level concept learning through probabilistic program induction , 2015, Science.

[22]  S. Brunton,et al.  Discovering governing equations from data by sparse identification of nonlinear dynamical systems , 2015, Proceedings of the National Academy of Sciences.

[23]  J. Templeton Evaluation of machine learning algorithms for prediction of regions of high Reynolds averaged Navier Stokes uncertainty , 2015 .

[24]  B. Frey,et al.  Predicting the sequence specificities of DNA- and RNA-binding proteins by deep learning , 2015, Nature Biotechnology.

[25]  Karthikeyan Duraisamy,et al.  Machine Learning Methods for Data-Driven Turbulence Modeling , 2015 .

[26]  Geoffrey E. Hinton,et al.  Deep Learning , 2015, Nature.

[27]  Barak A. Pearlmutter,et al.  Automatic differentiation in machine learning: a survey , 2015, J. Mach. Learn. Res..

[28]  Anand Pratap Singh,et al.  New Approaches in Turbulence and Transition Modeling Using Data-driven Techniques , 2015 .

[29]  Jimmy Ba,et al.  Adam: A Method for Stochastic Optimization , 2014, ICLR.

[30]  Yann LeCun,et al.  The Loss Surfaces of Multilayer Networks , 2014, AISTATS.

[31]  Houman Owhadi,et al.  Bayesian Numerical Homogenization , 2014, Multiscale Model. Simul..

[32]  C. Scovel,et al.  Brittleness of Bayesian Inference Under Finite Information in a Continuous World , 2013, 1304.6772.

[33]  Geoffrey E. Hinton,et al.  ImageNet classification with deep convolutional neural networks , 2012, Commun. ACM.

[34]  Jasper Snoek,et al.  Practical Bayesian Optimization of Machine Learning Algorithms , 2012, NIPS.

[35]  T. Dauxois Fermi, Pasta, Ulam, and a mysterious lady , 2008, 0801.1590.

[36]  G. Karniadakis,et al.  Spectral/hp Element Methods for Computational Fluid Dynamics , 2005 .

[37]  H. Bungartz,et al.  Sparse grids , 2004, Acta Numerica.

[38]  Carl E. Rasmussen,et al.  Gaussian processes for machine learning , 2005, Adaptive computation and machine learning.

[39]  Michele Milano,et al.  Neural network modeling for near wall turbulent flow , 2002 .

[40]  Henryk Wozniakowski,et al.  When Are Quasi-Monte Carlo Algorithms Efficient for High Dimensional Integrals? , 1998, J. Complex..

[41]  Dimitrios I. Fotiadis,et al.  Artificial neural networks for solving ordinary and partial differential equations , 1997, IEEE Trans. Neural Networks.

[42]  I.G. Kevrekidis,et al.  Continuous-time nonlinear signal processing: a neural network based approach for gray box identification , 1994, Proceedings of IEEE Workshop on Neural Networks for Signal Processing.

[43]  Lyle H. Ungar,et al.  A hybrid neural network‐first principles approach to process modeling , 1992 .

[44]  Jorge Nocedal,et al.  On the limited memory BFGS method for large scale optimization , 1989, Math. Program..

[45]  Kurt Hornik,et al.  Multilayer feedforward networks are universal approximators , 1989, Neural Networks.

[46]  M. Stein Large sample properties of simulations using latin hypercube sampling , 1987 .

[47]  Arieh Iserles,et al.  A First Course in the Numerical Analysis of Differential Equations: The diffusion equation , 2008 .

[48]  C. Basdevant,et al.  Spectral and finite difference solutions of the Burgers equation , 1986 .