Eye movement recordings: methods.

The development of oculomotor research is closely related to the development of the technology of eye movement recordings. The first part of this chapter summarizes some cornerstones of the history of eye movement recordings from the 18th century until today and explains the technical principles of the early antecedents of modern recording devices. The four most common recording techniques (electro-oculogram, infrared reflection devices, scleral search coil, and video-oculography) are then compared with respect to the most important system parameters: spatial resolution, temporal resolution, the capability to simultaneously record the multiple degrees of freedom of the eye, the setup complexity, system specific artifacts, and invasiveness. These features determine the suitability of these devices in particular applications.

[1]  M. Lamare Des mouvements des yeux dans la lecture , 1892 .

[2]  M. A. Frens,et al.  Recording eye movements with video-oculography and scleral search coils: a direct comparison of two methods , 2002, Journal of Neuroscience Methods.

[3]  J. Allum,et al.  Die Infrarot- und die Videookulographie – Alternativen zur Elektrookulographie? , 1999, HNO.

[4]  S. Glasauer,et al.  Comparison of human ocular torsion patterns during natural and galvanic vestibular stimulation. , 2002, Journal of neurophysiology.

[5]  E. Irving,et al.  Effects of scleral search coil wear on visual function. , 2003, Investigative ophthalmology & visual science.

[6]  Katsuyoshi Miura,et al.  Comparing the accuracy of video-oculography and the scleral search coil system in human eye movement analysis. , 2005, Auris, nasus, larynx.

[7]  R. Dodge,et al.  The angular velocity of eye movements , 1901 .

[8]  H. Collewijn,et al.  Human ocular counterroll: assessment of static and dynamic properties from electromagnetic scleral coil recordings , 2004, Experimental Brain Research.

[9]  B. Tatler,et al.  The Moving Tablet Of The Eye , 2005 .

[10]  U. Büttner,et al.  A simplified calibration method for three-dimensional eye movement recordings using search-coils , 1996, Vision Research.

[11]  E. Javal,et al.  Essai sur la physiologie de la lecture , 1878 .

[12]  Freiherr G. von Romberg,et al.  Ergebnisse der Spiegelnystagmographie , 1943, Albrecht von Graefes Archiv für Ophthalmologie.

[13]  J. T. Enright Ocular translation and cyclotorsion due to changes in fixation distance , 1980, Vision Research.

[14]  N. Miller,et al.  THE CORNEO-RETINAL POTENTIAL DIFFERENCE AS THE BASIS OF THE GALVANOMETRIC METHOD OF RECORDING EYE MOVEMENTS , 1935 .

[15]  A. H. Clarke,et al.  Using high frame rate CMOS sensors for three-dimensional eye tracking , 2002, Behavior research methods, instruments, & computers : a journal of the Psychonomic Society, Inc.

[16]  E. B. Delabarre A method of recording eye-movements. , 1898 .

[17]  Stefano Ramat,et al.  Influence of orientation of exiting wire of search coil annulus on torsion after saccades. , 2004, Investigative ophthalmology & visual science.

[18]  T. Haslwanter,et al.  A theoretical analysis of three-dimensional eye position measurement using polar cross-correlation , 1995, IEEE Transactions on Biomedical Engineering.

[19]  D. Zee,et al.  Validity of Listing's law during fixations, saccades, smooth pursuit eye movements, and blinks , 1996, Experimental Brain Research.

[20]  B.J.M. Hess,et al.  Magnetic search coil system for linear detection of three-dimensional angular movements , 1991, IEEE Transactions on Biomedical Engineering.

[21]  Heiner Deubel,et al.  Fourth Purkinje image signals reveal eye-lens deviations and retinal image distortions during saccades , 1995, Vision Research.

[22]  Thomas Eggert,et al.  Improving the homogeneity of the magnetic field in the magnetic search coil technique , 2001, IEEE Transactions on Biomedical Engineering.

[23]  H. Collewijn,et al.  Binocular co‐ordination of human horizontal saccadic eye movements. , 1988, The Journal of physiology.

[24]  D. Robinson,et al.  A METHOD OF MEASURING EYE MOVEMENT USING A SCLERAL SEARCH COIL IN A MAGNETIC FIELD. , 1963, IEEE transactions on bio-medical engineering.

[25]  H. Collewijn,et al.  Precise recording of human eye movements , 1975, Vision Research.

[26]  M. W. Greenlee,et al.  MR-Eyetracker: a new method for eye movement recording in functional magnetic resonance imaging , 1999, Experimental Brain Research.

[27]  M. Marmor,et al.  Standard for clinical electroretinography (1999 update) , 1998, Documenta Ophthalmologica.

[28]  P. Knox,et al.  The effect of scleral search coil lens wear on the eye , 2001, The British journal of ophthalmology.

[29]  T. Vilis,et al.  Computing three-dimensional eye position quaternions and eye velocity from search coil signals , 1990, Vision Research.

[30]  Mark M J Houben,et al.  Recording three-dimensional eye movements: scleral search coils versus video oculography. , 2006, Investigative ophthalmology & visual science.

[31]  I. Leon Meyers ELECTRONYSTAGMOGRAPHY: A GRAPHIC STUDY OF THE ACTION CURRENTS IN NYSTAGMUS , 1929 .

[32]  I. Howard,et al.  THE MEASUREMENT OF EYE TORSION. , 1963, Vision research.

[33]  Mark Shelhamer,et al.  Automatic Detection of Camera Translation in Eye Video Recordings using Multiple Methods , 2005, Annals of the New York Academy of Sciences.

[34]  K Nakayama PHOTOGRAPHIC DETERMINATION OF THE ROTATIONAL STATE OF THE EYE USING MATRICES* , 1974, American journal of optometry and physiological optics.

[35]  M A Frens,et al.  Scleral search coils influence saccade dynamics. , 2002, Journal of neurophysiology.

[36]  E. B. Huey On the Psychology and physiology of reading II , 1900 .

[37]  R. Jung Eine Elektrische Methode zur Mehrfachen Registrierung von Augenbewegungen und Nystagmus , 2005, Klinische Wochenschrift.

[38]  Jian-Gang Wang,et al.  Gaze determination via images of irises , 2001, Image Vis. Comput..

[39]  E. B. Huey,et al.  Preliminary experiments in the physiology and psychology of reading , 1898 .

[40]  E. Edelman,et al.  OCULAR TORSION ON EARTH AND IN WEIGHTLESSNESS * , 1981, Annals of the New York Academy of Sciences.