Z-inertial fusion energy: power plant final report FY 2006.

This report summarizes the work conducted for the Z-inertial fusion energy (Z-IFE) late start Laboratory Directed Research Project. A major area of focus was on creating a roadmap to a z-pinch driven fusion power plant. The roadmap ties ZIFE into the Global Nuclear Energy Partnership (GNEP) initiative through the use of high energy fusion neutrons to burn the actinides of spent fuel waste. Transmutation presents a near term use for Z-IFE technology and will aid in paving the path to fusion energy. The work this year continued to develop the science and engineering needed to support the Z-IFE roadmap. This included plant system and driver cost estimates, recyclable transmission line studies, flibe characterization, reaction chamber design, and shock mitigation techniques.

[1]  N. Fenton The Personal Interview , 1934 .

[2]  D. R. Stull JANAF thermochemical tables , 1966 .

[3]  Dm Rao A method of flow stabilisation with high pressure recovery in short, conical diffusers , 1971 .

[4]  C. F. Jr. Baes,et al.  CHEMISTRY AND THERMODYNAMICS OF MOLTEN SALT REACTOR FUELS. , 1974 .

[5]  M. Sugisaki,et al.  Tritium solubility in SUS-316 stainless steel , 1984 .

[6]  M. Sugisaki,et al.  Surface reaction and bulk diffusion of tritium in SUS-316 stainless steel , 1985 .

[7]  M. Ashby,et al.  Cellular solids: Structure & properties , 1988 .

[8]  Clifford Goodman,et al.  American Society of Mechanical Engineers , 1988 .

[9]  T. Mager Thermal annealing of an embrittled reactor vessel: feasibility and methodology , 1990 .

[10]  Wayne R. Meier,et al.  Economic Modeling and Parametric Studies for Osiris — A HIB-Driven IFE Power Plant , 1992 .

[11]  A. Kohyama,et al.  Irradiation response of a reduced activation Fe-8Cr-2W martensitic steel (F82H) after FFTF irradiation , 1992 .

[12]  Hugh O. Pierson,et al.  Handbook of carbon, graphite, diamond, and fullerenes : properties, processing, and applications , 1993 .

[13]  W. H. Williams,et al.  HYLIFE-II: A Molten-Salt Inertial Fusion Energy Power Plant Design — Final Report , 1994 .

[14]  G. W. Hollenberg,et al.  Tritium/hydrogen barrier development , 1995 .

[15]  K. Shiba,et al.  Preliminary results of the round-robin testing of F82H , 1996 .

[16]  B. Dafferner,et al.  Charpy impact properties of low activation alloys for fusion applications after neutron irradiation , 1996 .

[17]  S. F. Actory,et al.  Personal correspondence , 1997 .

[18]  Michael E Mayfield,et al.  Annealing of nuclear reactor pressure vessels , 1998 .

[19]  Yu. A. Nikolaev,et al.  Behavior of mechanical properties of nickel-alloyed reactor pressure vessel steel under neutron irradiation and post-irradiation annealing , 1998 .

[20]  Akira Kohyama,et al.  Current status and future R&D for reduced-activation ferritic/martensitic steels , 1998 .

[21]  Steven J. Zinkle,et al.  Thermophysical and mechanical properties of Fe-(8-9)%Cr reduced activation steels , 1998 .

[22]  R. Pelli,et al.  On thermal annealing of irradiated PWR pressure vessels , 1998 .

[23]  E. Serra,et al.  Hydrogen isotopes transport parameters in fusion reactor materials , 1998 .

[24]  A. Hishinuma,et al.  Tensile behavior of F82H with and without spectral tailoring , 2000 .

[25]  F. Meijer Plasma Spectroscopy , 2000 .

[26]  Mark H. Anderson,et al.  Shock tube investigation of hydrodynamic issues related to inertial confinement fusion , 2000 .

[27]  P. Peterson Design Methods for Thick-Liquid Protection of Inertial Fusion Chambers , 2001 .

[28]  P. Balaguru,et al.  Comparative study of high temperature composites , 2001 .

[29]  P. F. Peterson,et al.  Partial Pocket Experiments for IFE Thick-Liquid Pocket Disruption and Clearing , 2001 .

[30]  A. Sagara,et al.  Chemical behavior of Li2BeF4 molten salt as a liquid tritium breeder , 2001 .

[31]  K. Shiba,et al.  Materials design data for reduced activation martensitic steel type F82H , 2002 .

[32]  Akira Kohyama,et al.  Radiation effects on low cycle fatigue properties of reduced activation ferritic/martensitic steels , 2002 .

[33]  D. T. Goodin,et al.  Cost Modeling for Fabrication of Direct Drive Inertial Fusion Energy Targets , 2003 .

[34]  A. C. Gaeris,et al.  Laser propagation and energy absorption by an argon spark , 2003 .

[35]  Vaclav Dostal,et al.  Supercritical CO2 Cycle for Fast Gas-Cooled Reactors , 2004 .

[36]  Mikio Enoeda,et al.  Reduced activation martensitic steels as a structural material for ITER test blanket , 2004 .

[37]  ivanandan S. Harilal patial and temporal evolution of argon sparks , 2004 .

[38]  R. Olson Target Physics Scaling for Z-Pinch Inertial Fusion Energy , 2005 .

[39]  P. Calderoni,et al.  Development Path for Z-Pinch IFE , 2005 .

[40]  Per F. Peterson,et al.  Dynamics of Liquid-Protected Fusion Chambers , 2005 .

[41]  E. Marriott,et al.  Z-Pinch (LiF)2-BeF2 (flibe) Preliminary Vaporization Estimation Using the BUCKY 1-D Radiation Hydrodynamics Code , 2005, 21st IEEE/NPS Symposium on Fusion Engineering SOFE 05.

[42]  V. Vigil,et al.  Shock Mitigation Studies of Solid Foams for Z-Pinch Chamber Protection , 2005, 21st IEEE/NPS Symposium on Fusion Engineering SOFE 05.

[43]  A. Robinson,et al.  ALEGRA-MHD : version 4.6 , 2005 .

[44]  K. Kitagawa,et al.  Attenuation of shock wave by porous materials , 2005 .

[45]  A. Robinson,et al.  ALEGRA-HEDP : version 4.6. , 2005 .

[46]  R P Abbott,et al.  Analyses in Support of Z-Pinch IFE and Actinide Transmutation - LLNL Progress Report for FY-06 , 2006 .

[47]  Wayne R. Meier,et al.  Fusion transmutation of waste: design and analysis of the in-zinerator concept. , 2006 .

[48]  Mark S. Anderson,et al.  Shock Mitigation Studies in Voided Liquids for Fusion Chamber Protection , 2007 .

[49]  P. Peterson,et al.  Experimental Investigation of Z-Pinch IFE Chamber Liquid Structure Response , 2007 .

[50]  S. M. Ghiaasiaan,et al.  Void Fraction Distribution in Two-Phase Jets for Z-Pinch IFE Reactor Applications , 2007 .

[51]  M. Cuneo,et al.  Architecture of petawatt-class z-pinch accelerators. , 2007 .