A generic particle swarm optimization Matlab function

Particle swarm optimization (PSO) is rapidly gaining popularity but an official implementation of the PSO algorithm in Matlab is yet to be released. In this paper, we present a generic particle swarm optimization Matlab function. The syntax necessary to interface the function is practically identical to that of existing Matlab functions such as fmincon and ga. We demonstrate our PSO function by means of two examples: the first example is an academic test problem; the second example is a simplified problem of optimizing the gear ratios in a hybrid electric drivetrain. The PSO function is available online.

[1]  Brian Birge,et al.  PSOt - a particle swarm optimization toolbox for use with Matlab , 2003, Proceedings of the 2003 IEEE Swarm Intelligence Symposium. SIS'03 (Cat. No.03EX706).

[2]  Pedro Faria,et al.  Particle swarm optimization applied to integrated demand response resources scheduling , 2011, 2011 IEEE Symposium on Computational Intelligence Applications In Smart Grid (CIASG).

[3]  Olle Sundström,et al.  A generic dynamic programming Matlab function , 2009, 2009 IEEE Control Applications, (CCA) & Intelligent Control, (ISIC).

[4]  G. Lambert-Torres,et al.  Particle Swarm Optimization applied to system restoration , 2009, 2009 IEEE Bucharest PowerTech.

[5]  J. Basterrechea,et al.  Particle Swarm Optimization applied to planar arrays synthesis using subarrays , 2010, Proceedings of the Fourth European Conference on Antennas and Propagation.

[6]  José Valente de Oliveira,et al.  Particle swarm optimization applied to the chess game , 2008, 2008 IEEE Congress on Evolutionary Computation (IEEE World Congress on Computational Intelligence).

[7]  Kamran Behdinan,et al.  Particle swarm approach for structural design optimization , 2007 .

[8]  Lino Guzzella,et al.  Vehicle Propulsion Systems: Introduction to Modeling and Optimization , 2005 .

[9]  Carlos A. Coello Coello,et al.  A constraint-handling mechanism for particle swarm optimization , 2004, Proceedings of the 2004 Congress on Evolutionary Computation (IEEE Cat. No.04TH8753).

[10]  Daozhuo Jiang,et al.  Particle Swarm Optimization Applied to Optimal Power Flow Solution , 2009, 2009 Fifth International Conference on Natural Computation.

[11]  James Kennedy,et al.  Particle swarm optimization , 2002, Proceedings of ICNN'95 - International Conference on Neural Networks.

[12]  Carlos A. Coello Coello,et al.  Handling multiple objectives with particle swarm optimization , 2004, IEEE Transactions on Evolutionary Computation.