Trichoderma Enzymes for Textile Industries

Abstract Introducing enzymes into the textile industry has been an environmentally sustainable approach, leading to high-quality products and cost savings in the processes. During the last three decades the use of enzymes has been fully accepted by the textile manufacturers, and there is still potential for novel and improved enzyme applications in future textile processing. Trichoderma cellulases have been the one of the pioneering enzyme products brought onto the market, and there was a concentration of extensive studies involving Trichoderma reesei enzymes at the turn of the millennium. Nowadays novel cellulase products from other fungal sources have proven useful in the textile industry, and T. reesei can be considered to be one of the most relevant production platforms for textile enzymes.

[1]  Mariam B. Sticklen,et al.  Plant genetic engineering for biofuel production: towards affordable cellulosic ethanol , 2008, Nature Reviews Genetics.

[2]  F. Tjerneld,et al.  Enzymatic properties of the low molecular mass endoglucanases Cel12A (EG III) and Cel45A (EG V) of Trichoderma reesei. , 2002, Journal of biotechnology.

[3]  N. V. Ankudimova,et al.  Study of protein adsorption on indigo particles confirms the existence of enzyme--indigo interaction sites in cellulase molecules. , 2001, Journal of biotechnology.

[4]  D. Kilburn,et al.  Cellulose-binding domains : classification and properties , 1995 .

[5]  J. A. Roubos,et al.  Genome sequencing and analysis of the versatile cell factory Aspergillus niger CBS 513.88 , 2007, Nature Biotechnology.

[6]  J. Rouvinen,et al.  Heterologous expression of Melanocarpus albomyces cellobiohydrolase Cel7B, and random mutagenesis to improve its thermostability , 2007 .

[7]  A. Kumar,et al.  OPTIMIZING THE USE OF CELLULASE ENZYMES , 1996 .

[8]  B Henrissat,et al.  A classification of glycosyl hydrolases based on amino acid sequence similarities. , 1991, The Biochemical journal.

[9]  J. Buchert,et al.  The role of Trichoderma reesei cellulases in cotton finishing , 2001 .

[10]  M. Yoon,et al.  OPTIMIZING THE USE OF CELLULASE ENZYMES IN FINISHING CELLULOSIC FABRICS , 1997 .

[11]  M. Penttilä,et al.  Cloning and expression in Saccharomyces cerevisiae of a Trichoderma reesei beta-mannanase gene containing a cellulose binding domain , 1995, Applied and environmental microbiology.

[12]  M Penttilä,et al.  A versatile transformation system for the cellulolytic filamentous fungus Trichoderma reesei. , 1987, Gene.

[13]  S. R. Couto,et al.  Industrial and biotechnological applications of laccases: a review. , 2006, Biotechnology advances.

[14]  Merja Penttilä,et al.  Heterologous protein production in Trichoderma , 1998 .

[15]  Hans-Karl Rouette,et al.  Encyclopedia of Textile Finishing , 2001 .

[16]  A. G. Day,et al.  Comparison of family 12 glycoside hydrolases and recruited substitutions important for thermal stability , 2003, Protein science : a publication of the Protein Society.

[17]  H. Lenting,et al.  Mechanism of interaction between cellulase action and applied shear force, an hypothesis. , 2001, Journal of biotechnology.

[18]  J. Buchert,et al.  Treating Denim Fabrics with Trichoderma Reesei Cellulases , 2000 .

[19]  Y. Hsieh,et al.  Enzymatic Scouring to Improve Cotton Fabric Wettability , 1998 .

[20]  Rani Gupta,et al.  Microbial α-amylases: a biotechnological perspective , 2003 .

[21]  H. Nevalainen,et al.  On the safety of Trichoderma reesei. , 1994, Journal of biotechnology.

[22]  G. Chinga-Carrasco Cellulose fibres, nanofibrils and microfibrils: The morphological sequence of MFC components from a plant physiology and fibre technology point of view , 2011, Nanoscale research letters.

[23]  T. Reinikainen,et al.  Domain function in Trichoderma reesei cellobiohydrolases , 1992 .

[24]  D. Bishop,et al.  Cellulase finishing of woven, cotton fabrics in jet and winch machines. , 2001, Journal of biotechnology.

[25]  I. Hardin,et al.  ENZYMATIC SCOURING OF COTTON : SURFACTANTS, AGITATION, AND SELECTION OF ENZYMES , 1998 .

[26]  J. Andreaus,et al.  Indigo-Cellulase Interactions , 2000 .

[27]  Gusakov,et al.  Surface hydrophobic amino acid residues in cellulase molecules as a structural factor responsible for their high denim-washing performance. , 2000, Enzyme and microbial technology.

[28]  B Henrissat,et al.  Glycoside hydrolases and glycosyltransferases: families and functional modules. , 2001, Current opinion in structural biology.

[29]  J. Andreaus,et al.  Influence of Cellulases on Indigo Backstaining , 2000 .

[30]  Liisa Viikari,et al.  Hydrolysis of amorphous and crystalline cellulose by heterologously produced cellulases of Melanocarpus albomyces. , 2008, Journal of biotechnology.

[31]  T. K. Ghose Measurement of cellulase activities , 1987 .

[32]  B. Tuin,et al.  Hydrolase-catalysed synthesis of peroxycarboxylic acids: Biocatalytic promiscuity for practical applications. , 2006, Journal of biotechnology.

[33]  Reena Gupta,et al.  Microbial pectinolytic enzymes: A review , 2005 .

[34]  Yasushi Morikawa,et al.  Directed evolution of endoglucanase III (Cel12A) from Trichoderma reesei , 2009, Applied Microbiology and Biotechnology.

[35]  A. Cavaco-Paulo,et al.  Mechanism of cellulase action in textile processes , 1998 .

[36]  A. Gusakov,et al.  Interaction between indigo and adsorbed protein as a major factor causing backstaining during cellulase treatment of cotton fabrics , 1998 .

[37]  Peter Luginbühl,et al.  Discovery of Pectin-degrading Enzymes and Directed Evolution of a Novel Pectate Lyase for Processing Cotton Fabric* , 2005, Journal of Biological Chemistry.

[38]  K. Isono,et al.  Genome sequencing and analysis of Aspergillus oryzae , 2005, Nature.

[39]  Bernard Henrissat,et al.  Corrigendum: Genome sequencing and analysis of the biomass-degrading fungus Trichoderma reesei (syn. Hypocrea jecorina) , 2008, Nature Biotechnology.

[40]  A. Goffeau,et al.  The complete genome sequence of the Gram-positive bacterium Bacillus subtilis , 1997, Nature.

[41]  N. Hakulinen,et al.  Crystal structure of an ascomycete fungal laccase from Thielavia arenaria – common structural features of asco‐laccases , 2011, The FEBS journal.

[42]  J. Vehmaanperä,et al.  Cloning of cellulase genes from Melanocarpus albomyces and their efficient expression in Trichoderma reesei , 2004 .

[43]  M. Claeyssens,et al.  Chromatographic separation of cellulolytic enzymes , 1988 .

[44]  J. Andreaus,et al.  The application of catalase for the elimination of hydrogen peroxide residues after bleaching of cotton fabrics. , 2002, Anais da Academia Brasileira de Ciencias.

[45]  M. Himmel,et al.  The O-glycosylated linker from the Trichoderma reesei Family 7 cellulase is a flexible, disordered protein. , 2010, Biophysical journal.

[46]  D. Bolam,et al.  Carbohydrate-binding modules: fine-tuning polysaccharide recognition. , 2004, The Biochemical journal.

[47]  M. Schülein Protein engineering of cellulases. , 2000, Biochimica et biophysica acta.

[48]  O. Petrini,et al.  Molecular evidence that the asexual industrial fungus Trichoderma reesei is a clonal derivative of the ascomycete Hypocrea jecorina. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[49]  J. Buchert,et al.  Trichoderma reesei cellulases and their core domains in the hydrolysis and modification of chemical pulp , 2000 .

[50]  D. Kilburn,et al.  Interactions of cotton with CBD peptides , 1999 .

[51]  L. Almeida,et al.  THE EFFECT OF CELLULASE TREATMENT IN TEXTILE WASHING PROCESSES , 2008 .

[52]  Luis Almeida,et al.  Indigo Backstaining During Cellulase Washing , 1998 .

[53]  J. Saddler,et al.  Access to cellulose limits the efficiency of enzymatic hydrolysis: the role of amorphogenesis , 2010, Biotechnology for biofuels.

[54]  B. Henrissat,et al.  A scheme for designating enzymes that hydrolyse the polysaccharides in the cell walls of plants , 1998, FEBS letters.

[55]  M. Bailey,et al.  Induction, isolation and testing of stable Trichoderma reesei mutants with improved production of solubilizing cellulase , 1981 .

[56]  A. Várnai,et al.  Improving enzymatic conversion of lignocellulose to platform sugars , 2012 .

[57]  Rainer Merkl,et al.  The Complete Genome Sequence of Bacillus licheniformis DSM13, an Organism with Great Industrial Potential , 2004, Journal of Molecular Microbiology and Biotechnology.

[58]  J. Buchert,et al.  Treatment of cotton fabrics with purified Trichoderma reesei cellulases , 2008 .

[59]  Francisco M. Gama,et al.  Textile depilling: Superior finishing using cellulose-binding domains with residual enzymatic activity , 2007 .

[60]  J. Kallio,et al.  High-Yield Production of a Bacterial Xylanase in the Filamentous Fungus Trichoderma reesei Requires a Carrier Polypeptide with an Intact Domain Structure , 2003, Applied and Environmental Microbiology.

[61]  Hartwig Höcker,et al.  Enzyme treatments for wool and cotton , 2008 .

[62]  Luis Almeida,et al.  Effects of Agitation and Endoglucanase Pretreatment on the Hydrolysis of Cotton Fabrics by a Total Cellulase , 1996 .

[63]  J. Vandekerckhove,et al.  Studies of the cellulolytic system of Trichoderma reesei QM 9414. Analysis of domain function in two cellobiohydrolases by limited proteolysis. , 1988, European journal of biochemistry.

[64]  J. Ståhlberg,et al.  Structural and biochemical studies of GH family 12 cellulases: improved thermal stability, and ligand complexes. , 2005, Progress in biophysics and molecular biology.

[65]  Amos Bairoch,et al.  The ENZYME database in 2000 , 2000, Nucleic Acids Res..

[66]  J. Tolan,et al.  Cellulase from Submerged Fermentation , 1999 .

[67]  M. Paloheimo,et al.  Enhanced production of cellobiohydrolases in Trichoderma reesei and evaluation of the new preparations in biofinishing of cotton. , 2005, Journal of biotechnology.

[68]  A. Annila,et al.  Identification of functionally important amino acids in the cellulose‐binding domain of Trichoderma reesei cellobiohydrolase I , 1995, Protein science : a publication of the Protein Society.

[69]  M. Himmel,et al.  In planta expression of A. cellulolyticus Cel5A endocellulase reduces cell wall recalcitrance in tobacco and maize , 2011, Biotechnology for biofuels.

[70]  P. Gao,et al.  Directed evolution for engineering pH profile of endoglucanase III from Trichoderma reesei. , 2005, Biomolecular engineering.

[71]  J. Hearle,et al.  Physical Properties of Textile Fibres , 1962 .

[72]  T. Joyce,et al.  Enzymatic deinking of cellulose fabric , 1994 .

[73]  J. Buchert,et al.  Synergistic Effects of Trichoderma reesei Cellulases on the Properties of Knitted Cotton Fabric , 2001 .

[74]  L. Lynd,et al.  Toward an aggregated understanding of enzymatic hydrolysis of cellulose: Noncomplexed cellulase systems , 2004, Biotechnology and bioengineering.

[75]  M. Mandels,et al.  INDUCTION OF CELLULASE IN TRICHODERMA VIRIDE AS INFLUENCED BY CARBON SOURCES AND METALS , 1957, Journal of bacteriology.