Fractional quantum Hall physics in Jaynes-Cummings-Hubbard lattices.

Jaynes-Cummings-Hubbard arrays provide unique opportunities for quantum emulation as they exhibit convenient state preparation and measurement, as well as in situ tuning of parameters. We show how to realize strongly correlated states of light in Jaynes-Cummings-Hubbard arrays under the introduction of an effective magnetic field. The effective field is realized by dynamic tuning of the cavity resonances. We demonstrate the existence of Laughlin-like fractional quantum Hall states by computing topological invariants, phase transitions between topologically distinct states, and Laughlin wave function overlap.

[1]  M. Handzic 5 , 1824, The Banality of Heidegger.