PHOTOMETRY’S BRIGHT FUTURE: DETECTING SOLAR SYSTEM ANALOGS WITH FUTURE SPACE TELESCOPES

Time-series transit photometry from the Kepler space telescope has allowed for the discovery of thousands of exoplanets. We explore the potential of yet improved future missions such as PLATO 2.0 in detecting solar system analogs. We use real-world solar data and end-to-end simulations to explore the stellar and instrumental noise properties. By injecting and retrieving planets, rings, and moons of our own solar system, we show that the discovery of Venus and Earth analogs transiting G dwarfs like our Sun is feasible at high signal-to-noise ratio after collecting 6 yr of data, but Mars and Mercury analogs will be difficult to detect owing to stellar noise. In the best cases, Saturn’s rings and Jupiter’s moons will be detectable even in single-transit observations. Through the high number (>1 billion) of observed stars by PLATO 2.0, it will become possible to detect thousands of single-transit events by cold gas giants, analogs to our Jupiter, Saturn, Uranus, and Neptune. Our own solar system aside, we also show, through signal injection and retrieval, that PLATO 2.0 class photometry will allow for the secure detection of exomoons transiting quiet M dwarfs. This is the first study analyzing in depth the potential of future missions and the ultimate limits of photometry, using realistic case examples.

[1]  B. Monard,et al.  A COLD NEPTUNE-MASS PLANET OGLE-2007-BLG-368Lb: Cold neptunes are common , 2009, 0912.1171.

[2]  Jorge I. Zuluaga,et al.  A NOVEL METHOD FOR IDENTIFYING EXOPLANETARY RINGS , 2015, 1502.07818.

[3]  W. Schottky Über spontane Stromschwankungen in verschiedenen Elektrizitätsleitern , 1918 .

[4]  E. Agol,et al.  Analytic Light Curves for Planetary Transit Searches , 2002, astro-ph/0210099.

[5]  R. Arlt,et al.  A SOLAR CYCLE LOST IN 1793–1800: EARLY SUNSPOT OBSERVATIONS RESOLVE THE OLD MYSTERY , 2009, 0907.0063.

[6]  E. Ford,et al.  TIME VARIATION OF KEPLER TRANSITS INDUCED BY STELLAR SPOTS—A WAY TO DISTINGUISH BETWEEN PROGRADE AND RETROGRADE MOTION. II. APPLICATION TO KOIs , 2015, 1504.04028.

[7]  Joshua N. Winn,et al.  PARAMETER ESTIMATION FROM TIME-SERIES DATA WITH CORRELATED ERRORS: A WAVELET-BASED METHOD AND ITS APPLICATION TO TRANSIT LIGHT CURVES , 2009, 0909.0747.

[8]  David M. Kipping,et al.  On the detectability of habitable exomoons with Kepler-class photometry , 2009, 0907.3909.

[9]  Frederic Pont,et al.  The effect of red noise on planetary transit detection , 2006, astro-ph/0608597.

[10]  Aisey M Andel ANALYTIC LIGHTCURVES FOR PLANETARY TRANSIT SEARCHES , 2002 .

[11]  R. C. Domingos,et al.  Stable satellites around extrasolar giant planets , 2006 .

[12]  K. Ulaczyk,et al.  Microlens OGLE-2005-BLG-169 Implies That Cool Neptune-like Planets Are Common , 2006 .

[13]  Ryan C. Terrien,et al.  HABITABLE ZONES AROUND MAIN-SEQUENCE STARS: NEW ESTIMATES , 2013, 1301.6674.

[14]  T. Mazeh,et al.  STELLAR ROTATION PERIODS OF THE KEPLER OBJECTS OF INTEREST: A DEARTH OF CLOSE-IN PLANETS AROUND FAST ROTATORS , 2013, 1308.1845.

[15]  Daniel Foreman-Mackey,et al.  A SYSTEMATIC SEARCH FOR TRANSITING PLANETS IN THE K2 DATA , 2015, 1502.04715.

[16]  Tidal decay of close planetary orbits , 1996, astro-ph/9605059.

[17]  Jonathan J. Fortney,et al.  Transit Detectability of Ring Systems around Extrasolar Giant Planets , 2004 .

[18]  Khadeejah A. Zamudio,et al.  PLANETARY CANDIDATES OBSERVED BY KEPLER. V. PLANET SAMPLE FROM Q1–Q12 (36 MONTHS) , 2015, 1501.07286.

[19]  J. Jenkins,et al.  Some Tests to Establish Confidence in Planets Discovered by Transit Photometry , 2002 .

[20]  S. Roberts,et al.  Precise time series photometry for the Kepler-2.0 mission , 2014, 1412.6304.

[21]  Donald Gavel,et al.  Commissioning ShARCS: the Shane adaptive optics infrared camera-spectrograph for the Lick Observatory Shane 3-m telescope , 2014, Astronomical Telescopes and Instrumentation.

[22]  R. Roy,et al.  SOPHIE velocimetry of Kepler transit candidates - XII. KOI-1257 b: a highly eccentric three-month period transiting exoplanet , 2014, 1406.6172.

[23]  Howard Isaacson,et al.  FUNDAMENTAL PROPERTIES OF KEPLER PLANET-CANDIDATE HOST STARS USING ASTEROSEISMOLOGY , 2013, 1302.2624.

[24]  S. Aigrain,et al.  Practical planet prospecting , 2004 .

[25]  Kathryn Volk,et al.  CONSOLIDATING AND CRUSHING EXOPLANETS: DID IT HAPPEN HERE? , 2015, 1502.06558.

[26]  R. Heller Exomoon habitability constrained by energy flux and orbital stability , 2012, 1209.0050.

[27]  E. Poretti,et al.  Revisiting CoRoT RR Lyrae stars: detection of period doubling and temporal variation of additional frequencies , 2014, 1408.0653.

[28]  M. Hippke ON THE DETECTION OF EXOMOONS: A SEARCH IN KEPLER DATA FOR THE ORBITAL SAMPLING EFFECT AND THE SCATTER PEAK , 2015, 1502.05033.

[29]  E. W. Maunder The Sun and Sunspots, 1820–1920. (Plates 13, 14, 15, 16.) , 1922 .

[30]  S. Csizmadia,et al.  THE PLANETARY SYSTEM TO KIC 11442793: A COMPACT ANALOGUE TO THE SOLAR SYSTEM , 2013, 1310.6248.

[31]  Jon M. Jenkins,et al.  ARCHITECTURE AND DYNAMICS OF KEPLER'S CANDIDATE MULTIPLE TRANSITING PLANET SYSTEMS , 2011, 1102.0543.

[32]  J. Rowe,et al.  RADIAL VELOCITY OBSERVATIONS AND LIGHT CURVE NOISE MODELING CONFIRM THAT KEPLER-91b IS A GIANT PLANET ORBITING A GIANT STAR , 2014, 1408.3149.

[33]  F. Mullally,et al.  The K2 Mission: Characterization and Early Results , 2014, 1402.5163.

[34]  H. Korhonen,et al.  Stellar activity as noise in exoplanet detection – II. Application to M dwarfs , 2015, 1501.01302.

[35]  M. R. Haas,et al.  PLANETARY CANDIDATES OBSERVED BY KEPLER IV: PLANET SAMPLE FROM Q1-Q8 (22 MONTHS) , 2014 .

[36]  R. Heller DETECTING EXTRASOLAR MOONS AKIN TO SOLAR SYSTEM SATELLITES WITH AN ORBITAL SAMPLING EFFECT , 2014, 1403.5839.

[37]  T. Evans,et al.  A uniform analysis of HD 209458b Spitzer/IRAC light curves with Gaussian process models , 2015, 1504.05942.

[38]  S. Bloemen,et al.  Gravity and limb-darkening coefficients for the Kepler, CoRoT, Spitzer, uvby, UBVRIJHK, and Sloan photometric systems , 2011 .

[39]  A. Collier Cameron,et al.  Planets and Stellar Activity: Hide and Seek in the CoRoT-7 system , 2013, Proceedings of the International Astronomical Union.

[40]  Constraining the Oblateness of Kepler Planets , 2014, 1410.0361.

[41]  S. Rappaport,et al.  The relation between the transit depths of KIC 12557548b and the stellar rotation period , 2014, 1410.4289.

[42]  William F. Welsh,et al.  KEPLER MISSION STELLAR AND INSTRUMENT NOISE PROPERTIES , 2011, 1107.5207.

[43]  L. Buchhave,et al.  THE POSSIBLE MOON OF KEPLER-90g IS A FALSE POSITIVE , 2014, 1411.7028.

[44]  C. H. Ling,et al.  MOA-2010-BLG-328Lb: A SUB-NEPTUNE ORBITING VERY LATE M DWARF? , 2013, 1309.7714.

[45]  E. Chiang,et al.  SURFACE LAYER ACCRETION IN TRANSITIONAL AND CONVENTIONAL DISKS: FROM POLYCYCLIC AROMATIC HYDROCARBONS TO PLANETS , 2010, 1009.4930.

[46]  Douglas P. Hamilton,et al.  Neptune's capture of its moon Triton in a binary–planet gravitational encounter , 2006, Nature.

[47]  Marseille,et al.  Revisiting the transits of CoRoT-7b at a lower activity level , 2014, 1407.8099.

[48]  A.-M. Lagrange,et al.  Using the Sun to estimate Earth-like planets detection capabilities II. Impact of plages , 2010, 1001.1638.

[49]  F. Fressin,et al.  THE FALSE POSITIVE RATE OF KEPLER AND THE OCCURRENCE OF PLANETS , 2013, 1301.0842.

[50]  Adriana Valio,et al.  TRANSIT MODEL OF PLANETS WITH MOON AND RING SYSTEMS , 2011, 1111.5599.

[51]  E. Agol,et al.  VALIDATION OF KEPLER'S MULTIPLE PLANET CANDIDATES. III. LIGHT CURVE ANALYSIS AND ANNOUNCEMENT OF HUNDREDS OF NEW MULTI-PLANET SYSTEMS , 2014, 1402.6534.

[52]  M. R. Haas,et al.  TERRESTRIAL PLANET OCCURRENCE RATES FOR THE KEPLER GK DWARF SAMPLE , 2015, 1506.04175.

[53]  Howard Isaacson,et al.  Stellar Spin-Orbit Misalignment in a Multiplanet System , 2013, Science.

[54]  M. Mayor,et al.  A Jupiter-mass companion to a solar-type star , 1995, Nature.

[55]  Mark Clampin,et al.  Transiting Exoplanet Survey Satellite (TESS) , 2014, Astronomical Telescopes and Instrumentation.

[56]  D. Ehrenreich,et al.  Hubble Space Telescope search for the transit of the Earth-mass exoplanet α Centauri B b , 2015, 1503.07528.

[57]  G. Chow Tests of equality between sets of coefficients in two linear regressions (econometrics voi 28 , 1960 .

[58]  Judit M. Pap,et al.  FIRST RESULTS FROM VIRGO, THE EXPERIMENT FOR HELIOSEISMOLOGY AND SOLAR IRRADIANCE MONITORING ON SOHO , 1997 .

[59]  Jaymie M. Matthews,et al.  CHARACTERIZING K2 PLANET DISCOVERIES: A SUPER-EARTH TRANSITING THE BRIGHT K DWARF HIP 116454 , 2014, 1412.5674.

[60]  David M. Kipping Transit timing effects due to an exomoon , 2009 .

[61]  William J. Borucki,et al.  The photometric method of detecting other planetary systems , 1984 .

[62]  The Detectability of Transit Depth Variations due to Exoplanetary Oblateness and Spin Precession , 2010, 1005.1663.

[63]  Detecting transits from Earth-sized planets around Sun-like stars , 2008, 0804.3538.

[64]  P. Nicholson,et al.  Saturn's Rings II. Particle Sizes Inferred from Stellar Occultation Data , 2000 .

[65]  The mass of the Mars-sized exoplanet Kepler-138 b from transit timing , 2015, Nature.

[66]  Ansgar Reiners,et al.  COMPARISON OF KEPLER PHOTOMETRIC VARIABILITY WITH THE SUN ON DIFFERENT TIMESCALES , 2013 .

[67]  J. De Ridder,et al.  FUNDAMENTAL PROPERTIES OF STARS USING ASTEROSEISMOLOGY FROM KEPLER AND CoRoT AND INTERFEROMETRY FROM THE CHARA ARRAY , 2012, 1210.0012.

[68]  D. Kipping Characterizing Distant Worlds with Asterodensity Profiling , 2013, 1311.1170.

[69]  Travis S. Metcalfe,et al.  CoRoT Reveals a Magnetic Activity Cycle in a Sun-Like Star , 2010, Science.

[70]  David Kipping,et al.  KOI-142, THE KING OF TRANSIT VARIATIONS, IS A PAIR OF PLANETS NEAR THE 2:1 RESONANCE , 2013, 1304.4283.

[71]  S. Shapiro,et al.  An Analysis of Variance Test for Normality (Complete Samples) , 1965 .

[72]  M. R. Haas,et al.  MASSES, RADII, AND ORBITS OF SMALL KEPLER PLANETS: THE TRANSITION FROM GASEOUS TO ROCKY PLANETS , 2014, 1401.4195.

[73]  Charles H. Lineweaver,et al.  What Fraction of Sun-like Stars have Planets? , 2003 .

[74]  H. Rix,et al.  The James Webb Space Telescope , 2006, astro-ph/0606175.

[75]  A. Santerne,et al.  CoRoT 101186644: A transiting low-mass dense M-dwarf on an eccentric 20.7-day period orbit around a late F-star - Discovered in the CoRoT lightcurves , 2013, 1302.5830.

[76]  J. De Ridder,et al.  The PLATO Simulator: modelling of high-precision high-cadence space-based imaging , 2014, 1404.1886.

[77]  D. Bayliss,et al.  Phase Light Curves for Extrasolar Jupiters and Saturns , 2004, astro-ph/0406390.

[78]  L. Svalgaard,et al.  THE MAUNDER MINIMUM IS NOT AS GRAND AS IT SEEMED TO BE , 2015 .

[79]  Howard Isaacson,et al.  KEPLER-20: A SUN-LIKE STAR WITH THREE SUB-NEPTUNE EXOPLANETS AND TWO EARTH-SIZE CANDIDATES , 2011, 1112.4514.

[80]  Martin C. Stumpe,et al.  The Derivation, Properties, and Value of Kepler’s Combined Differential Photometric Precision , 2012, 1208.0595.

[81]  Howard Isaacson,et al.  Kepler Planet-Detection Mission: Introduction and First Results , 2010, Science.