Mapeamento de óxidos de ferro usando imagens Landsat-8/OLI e EO-1/Hyperion nos depósitos ferríferos da Serra Norte, Província Mineral de Carajás, Brasil

Mapping methods for iron oxides and clay minerals, using Landsat-8/Operational Land Imager (OLI) and Earth Observing 1 (EO-1)/Hyperion imagery integrated with airborne geophysical data, were applied in the N4, N5, and N4WS iron deposits, Serra Norte, Carajas, Brazil. Band ratios were achieved on Landsat-8/OLI imagery, allowing the recognition of the main minerals from iron deposits. The Landsat-8/OLI imagery showed a robust performance for iron oxide exploration, even in vegetated shrub areas. Feature extraction and Spectral Angle Mapper hyperspectral classification methods were carried out on EO-1/Hyperion imagery with good results for mapping high-grade iron ore, the hematite-goethite ratio, and clay minerals from regolith. The EO-1/Hyperion imagery proved an excellent tool for fast remote mineral mapping in open-pit areas, as well as mapping waste and tailing disposal facilities. An unsupervised classification was carried out on a data set consisting of EO-1/Hyperion visible near-infrared 74 bands, Landsat-8/OLI-derived Normalized Difference Vegetation Index, Laser Imaging Detection and Ranging-derived Digital Terrain Model, and high-resolution airborne geophysical data (gamma ray spectrometry, Tzz component of gradiometric gravimetry data). This multisource classification proved to be an adequate alternative for mapping iron oxides in vegetated shrub areas and to enhance the geology of the regolith and mineralized areas.

[1]  T. Toutin,et al.  Airborne and spaceborne Synthetic Aperture Radar (SAR) integration with Landsat TM and gamma ray spectrometry for geological mapping in a tropical rainforest environment, the Carajas Mineral Province, Brazil , 1997 .

[2]  Timothy E. Townsend,et al.  Discrimination of iron alteration minerals in visible and near‐infrared reflectance data , 1987 .

[3]  A. K. Gibbs,et al.  U-Pb AGES OF ZIRCONS FROM THE GRÃO-PARÁ GROUP AND SERRA DOS CARAJÁS GRANITE, PARÁ, BRAZIL , 1986 .

[4]  David M. Sherman,et al.  Electronic spectra of Fe3+ oxides and oxide hydroxides in the near IR to near UV , 1985 .

[5]  R. Clark,et al.  Reflectance spectroscopy: Quantitative analysis techniques for remote sensing applications , 1984 .

[6]  F. Feizi,et al.  Introducing the Iron Potential Zones Using Remote Sensing Studies in South of Qom Province, Iran , 2013 .

[7]  M. Macambira,et al.  Geochronological provinces of the Amazonian Craton , 1999 .

[8]  Michael J. Gaffey,et al.  Calibrations of phase abundance, composition, and particle size distribution for olivine-orthopyroxene mixtures from reflectance spectra , 1986 .

[9]  A. K. Gibbs,et al.  AGE AND COMPOSITION OF THE GRÃO PARÁ GROUP VOLCANICS, SERRA DOS CARAJÁS , 1986 .

[10]  G. E. Tolbert,et al.  The Recently Discovered Serra dos Carajas Iron Deposits, Northern Brazil , 1971 .

[11]  John Shepanski,et al.  Hyperion, a space-based imaging spectrometer , 2003, IEEE Trans. Geosci. Remote. Sens..

[12]  P. Switzer,et al.  A transformation for ordering multispectral data in terms of image quality with implications for noise removal , 1988 .

[13]  H. Govil,et al.  Mapping Regolith and Gossan for Mineral Exploration in the Eastern Kumaon Himalaya, India using hyperion data and object oriented image classification , 2014 .

[14]  Erick Ramanaidou,et al.  Measurement of the hematite:goethite ratio using field visible and near‐infrared reflectance spectrometry in channel iron deposits, Western Australia , 1997 .

[15]  Fred A. Kruse,et al.  Comparison of airborne hyperspectral data and EO-1 Hyperion for mineral mapping , 2003, IEEE Trans. Geosci. Remote. Sens..

[16]  Robert J. Stern,et al.  Mapping gossans in arid regions with Landsat TM and SIR-C images: the Beddaho Alteration Zone in northern Eritrea , 2000 .

[17]  Alexander F. H. Goetz,et al.  Discrimination of rock types and detection of hydrothermally altered areas in south-central Nevada by the use of computer-enhanced ERTS images , 1974 .

[18]  Hao Chen,et al.  Processing Hyperion and ALI for forest classification , 2003, IEEE Trans. Geosci. Remote. Sens..

[19]  D. Groves,et al.  Geological and SHRIMP II U-Pb constraints on the age and origin of the Breves Cu-Au-(W-Bi-Sn) deposit, Carajás, Brazil , 2004 .

[20]  M. Basei,et al.  SHRIMP zircon U–Pb constraints on the age of the Carajás formation, Grão ParáGroup, Amazon Craton , 1998 .

[21]  Catarina Labouré Bemfica Toledo,et al.  Reflectance spectroradiometry applied to a semi-quantitative analysis of the mineralogy of the N4ws deposit, Carajás Mineral Province, Pará, Brazil , 2016 .

[22]  A. Goetz,et al.  Geologic remote sensing. , 1981, Science.

[23]  Kevin White,et al.  Mapping the iron oxide content of dune sands, Namib Sand Sea, Namibia, using landsat thematic mapper data , 1997 .

[24]  R. Secco,et al.  ASPECTOS ECOLÓGICOS DA VEGETAÇÃO RUPESTRE DA SERRA DOS CARAJÁS, ESTADO DO PARÁ, BRASIL , 1996 .

[25]  A. K. Gibbs,et al.  The age, origin, and tectonics of the Grão Pará Group and associated rocks, Serra dos Carajás, Brazil: Archean continental volcanism and rifting , 1989 .

[26]  R. Ashley,et al.  Spectra of altered rocks in the visible and near infrared , 1979 .

[27]  R. Morris,et al.  Spectral and other physicochemical properties of submicron powders of hematite (alpha-Fe2O3), maghemite (gamma-Fe2O3), magnetite (Fe3O4), goethite (alpha-FeOOH), and lepidocrocite (gamma-FeOOH). , 1985, Journal of geophysical research.

[28]  D. Groves,et al.  A New Understanding of the Provinces of the Amazon Craton Based on Integration of Field Mapping and U-Pb and Sm-Nd Geochronology , 2000 .

[29]  A. B. Lefkoff,et al.  Expert system-based mineral mapping in northern death valley, California/Nevada, using the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) , 1993 .

[30]  R. Singer Near-infrared spectral reflectance of mineral mixtures - Systematic combinations of pyroxenes, olivine, and iron oxides , 1981 .

[31]  Tim R. McVicar,et al.  Preprocessing EO-1 Hyperion hyperspectral data to support the application of agricultural indexes , 2003, IEEE Trans. Geosci. Remote. Sens..