An analysis of a mixed finite element method for the Navier-Stokes equations

SummaryA simple mixed finite element method is developed to solve the steady state, incompressible Navier-Stokes equations in a neighborhood of an isolated—but not necessarily unique—solution. Convergence is established under very mild restrictions on the triangulation, and, when the solution is sufficiently smooth, optimal error bounds are obtained.

[1]  J. Lions Quelques méthodes de résolution de problèmes aux limites non linéaires , 1969 .

[2]  R. T. Cheng,et al.  Numerical Solution of the Navier‐Stokes Equations by the Finite Element Method , 1972 .

[4]  E. Becker,et al.  Finite element analysis of viscous, incompressible fluid flow , 1976 .

[5]  H. Keller,et al.  Approximation methods for nonlinear problems with application to two-point boundary value problems , 1975 .

[6]  Vivette Girault A combined finite element and Marker and cell method for solving Navier-Stokes equations , 1976 .

[7]  R. Temam Navier-Stokes Equations , 1977 .

[8]  J. H. Argyris,et al.  Finite-element analysis of slow incompressible viscous fluid motion , 1974 .

[9]  P. G. Ciarlet,et al.  Interpolation theory over curved elements, with applications to finite element methods , 1972 .

[10]  A. Baker Finite element solution algorithm for viscous incompressible fluid dynamics , 1973 .

[11]  Claes Johnson A mixed finite element method for the Navier-Stokes equations , 1978 .

[12]  Reinhard Scholz A mixed method for 4th order problems using linear finite elements , 1978 .

[13]  P. Jamet,et al.  Numerical solution of the stationary Navier-Stokes equations by finite element methods , 1973, Computing Methods in Applied Sciences and Engineering.

[14]  A Mixed Finite Element Method for the Stationary Stokes Equations , 1978 .

[15]  Tetsuhiko Miyoshi,et al.  A mixed finite element method for the solution of the von Kármán equations , 1976 .

[16]  Philippe G. Ciarlet,et al.  A Mixed Finite Element Method for the Biharmonic Equation , 1974 .

[17]  E. Boschi Recensioni: J. L. Lions - Quelques méthodes de résolution des problémes aux limites non linéaires. Dunod, Gauthier-Vi;;ars, Paris, 1969; , 1971 .

[18]  P. Hood,et al.  A numerical solution of the Navier-Stokes equations using the finite element technique , 1973 .

[19]  R. A. Silverman,et al.  The Mathematical Theory of Viscous Incompressible Flow , 1972 .

[21]  Richard H. Gallagher,et al.  Finite elements in fluids , 1975 .

[22]  F. Brezzi,et al.  Finite element approximations of the von Kármán equations , 1978 .

[23]  F. Brezzi On the existence, uniqueness and approximation of saddle-point problems arising from lagrangian multipliers , 1974 .

[24]  L. R. Scott,et al.  Optimal ^{∞} estimates for the finite element method on irregular meshes , 1976 .

[25]  P. Raviart,et al.  A mixed finite element method for 2-nd order elliptic problems , 1977 .

[26]  P. Raviart,et al.  Conforming and nonconforming finite element methods for solving the stationary Stokes equations I , 1973 .