Enhanced relativistic-electron-beam energy loss in warm dense aluminum.
暂无分享,去创建一个
D. Batani | R. Fedosejevs | V. Tikhonchuk | P. Patel | S. Hulin | J. Santos | K. Li | H. McLean | P. Nicolaï | F. Beg | M. Wei | D Batani | F N Beg | A Link | H. Sawada | P K Patel | R. Gray | P McKenna | J J Santos | A Debayle | V T Tikhonchuk | J R Davies | Y. Rhee | G. Kemp | J J Honrubia | J. Park | X. Vaisseau | L. Volpe | J. Davies | R J Gray | A. Link | J. Peebles | R Fedosejevs | A. Debayle | S Hulin | Ph Nicolaï | X Vaisseau | A Morace | H Sawada | B Vauzour | G E Kemp | S Kerr | K Li | H S McLean | M Mo | J Park | J Peebles | Y J Rhee | A Sorokovikova | L Volpe | M Wei | M. Mo | S. Kerr | A. Morace | J. Honrubia | B. Vauzour | A. Sorokovikova | P. Mckenna
[1] J. Seely,et al. Enhanced x-ray resolving power achieved behind the focal circles of Cauchois spectrometers. , 2008, Applied optics.
[2] M. Key,et al. Characterization of the preformed plasma for high-intensity laser-plasma interaction. , 2009, Optics letters.
[3] M. Key,et al. Diagnostics for fast ignition science (invited). , 2008, The Review of scientific instruments.
[4] C Andersen,et al. K(alpha) fluorescence measurement of relativistic electron transport in the context of fast ignition. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.
[5] J. J. Honrubia,et al. Simulations of heating of solid targets by fast electrons , 2006 .
[6] J. Meyer-ter-Vehn,et al. Hydrodynamic simulation of subpicosecond laser interaction with solid-density matter , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.
[7] P. Norreys,et al. Fast electron energy transport in solid density and compressed plasma , 2014 .
[8] L. Gremillet,et al. Supra-thermal electron beam stopping power and guiding in dense plasmas , 2013, Journal of Plasma Physics.
[9] P. Norreys,et al. Controlling fast-electron-beam divergence using two laser pulses. , 2010, Physical review letters.
[10] M. Desjarlais,et al. Annular fast electron transport in silicon arising from low-temperature resistivity. , 2013, Physical review letters.
[11] H. O. Wyckoff,et al. International Commission on Radiation Units and Measurements , 1975 .
[12] R R Freeman,et al. A Bremsstrahlung spectrometer using k-edge and differential filters with image plate dosimeters. , 2008, The Review of scientific instruments.
[13] M. Key,et al. Fast electron temperature and conversion efficiency measurements in laser-irradiated foil targets using a bremsstrahlung x-ray detector , 2011 .
[14] W B Mori,et al. Global simulation for laser-driven MeV electrons in fast ignition. , 2004, Physical review letters.
[15] Andrew G. Glen,et al. APPL , 2001 .
[16] L. Spitzer. Physics of fully ionized gases , 1956 .
[17] L. Divol,et al. Interaction physics of multipicosecond Petawatt laser pulses with overdense plasma. , 2012, Physical review letters.
[18] V. Tikhonchuk. Interaction of a beam of fast electrons with solids , 2002 .
[19] V. Yahia,et al. Relativistic high-current electron-beam stopping-power characterization in solids and plasmas: collisional versus resistive effects. , 2012, Physical review letters.
[20] R. Betti,et al. Integrated simulations of implosion, electron transport, and heating for direct-drive fast-ignition targets , 2009 .
[21] C. Hombourger. An empirical expression for K-shell ionization cross section by electron impact , 1998 .
[22] Dale R. Welch,et al. Implementation of an non-iterative implicit electromagnetic field solver for dense plasma simulation , 2004, Comput. Phys. Commun..
[23] Vladimir T. Tikhonchuk,et al. Characterization of laser-produced fast electron sources for fast ignition , 2010 .
[24] N. Miyanaga,et al. Fast heating of ultrahigh-density plasma as a step towards laser fusion ignition , 2001, Nature.
[25] Michael D. Perry,et al. Ignition and high gain with ultrapowerful lasers , 1994 .
[26] R. Fedosejevs,et al. Kirkpatrick-Baez microscope for hard X-ray imaging of fast ignition experiments. , 2013, The Review of scientific instruments.
[27] S. Wilks,et al. Collisional relaxation of superthermal electrons generated by relativistic laser pulses in dense plasma. , 2006, Physical review letters.
[28] J. J. Honrubia,et al. Fast ignition of fusion targets by laser-driven electrons , 2008, 0811.1760.
[29] Erik Lefebvre,et al. Inhibition of fast electron energy deposition due to preplasma filling of cone-attached targets , 2008 .
[30] V. Yahia,et al. Unraveling resistive versus collisional contributions to relativistic electron beam stopping power in cold-solid and in warm-dense plasmas , 2014 .
[31] M. Borghesi,et al. Generation and optimization of electron currents along the walls of a conical target for fast ignition , 2010 .
[32] Stefano Atzeni,et al. Targets for direct-drive fast ignition at total laser energy of 200-400 kJ , 2007 .
[33] Rémi Abgrall,et al. A Cell-Centered Lagrangian Scheme for Two-Dimensional Compressible Flow Problems , 2007, SIAM J. Sci. Comput..
[34] B. Chimier,et al. Heating model for metals irradiated by a subpicosecond laser pulse , 2007 .