An iterative integrated framework for thermal-visible image registration, sensor fusion, and people tracking for video surveillance applications

[1]  Noel E. O'Connor,et al.  Comparison of Fusion Methods for Thermo-Visual Surveillance Tracking , 2006, 2006 9th International Conference on Information Fusion.

[2]  Bir Bhanu,et al.  Fusion of color and infrared video for moving human detection , 2007, Pattern Recognit..

[3]  Guillaume-Alexandre Bilodeau,et al.  A Multiple Hypothesis Tracking Method with Fragmentation Handling , 2009, 2009 Canadian Conference on Computer and Robot Vision.

[4]  Ankush Mittal,et al.  Addressing uncertainty in multi-modal fusion for improved object detection in dynamic environment , 2010, Inf. Fusion.

[5]  P. Anandan,et al.  Robust multi-sensor image alignment , 1998, Sixth International Conference on Computer Vision (IEEE Cat. No.98CH36271).

[6]  Firooz Sadjadi,et al.  Comparative Image Fusion Analysais , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05) - Workshops.

[7]  Guillaume-Alexandre Bilodeau,et al.  Feedback scheme for thermal-visible video registration, sensor fusion, and people tracking , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition - Workshops.

[8]  Andrew Zisserman,et al.  Multiple View Geometry in Computer Vision (2nd ed) , 2003 .

[9]  Thomas S. Huang,et al.  Multimodal Surveillance: an Introduction , 2007, 2007 IEEE Conference on Computer Vision and Pattern Recognition.

[10]  B. Bhanu,et al.  Detecting moving humans using color and infrared video , 2003, Proceedings of IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems, MFI2003..

[11]  Diego A. Socolinsky,et al.  Design and Deployment of Visible-Thermal Biometric Surveillance Systems , 2007, 2007 IEEE Conference on Computer Vision and Pattern Recognition.

[12]  Mohan M. Trivedi,et al.  Mutual information based registration of multimodal stereo videos for person tracking , 2007, Comput. Vis. Image Underst..

[13]  James W. Davis,et al.  Fusion-Based Background-Subtraction using Contour Saliency , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05) - Workshops.

[14]  Guillaume-Alexandre Bilodeau,et al.  Visible and infrared image registration using trajectories and composite foreground images , 2011, Image Vis. Comput..

[15]  Linda G. Shapiro,et al.  Computer and Robot Vision , 1991 .

[16]  Riad I. Hammoud,et al.  Augmented Vision Perception in Infrared: Algorithms and Applied Systems , 2009 .

[17]  Guillaume-Alexandre Bilodeau,et al.  Automatic Registration of Color and Infrared Videos Using Trajectories Obtained from a Multiple Object Tracking Algorithm , 2008, 2008 Canadian Conference on Computer and Robot Vision.

[18]  Alan F. Smeaton,et al.  Thermo-visual feature fusion for object tracking using multiple spatiogram trackers , 2007 .

[19]  James W. Davis,et al.  Background-subtraction using contour-based fusion of thermal and visible imagery , 2007, Comput. Vis. Image Underst..

[20]  E. Coiras,et al.  Segment-based registration technique for visual-infrared images , 2000 .

[21]  Riad I. Hammoud,et al.  Thermal-Visible Video Fusion for Moving Target Tracking and Pedestrian Classification , 2007, 2007 IEEE Conference on Computer Vision and Pattern Recognition.

[22]  Riad I. Hammoud,et al.  Robust Multi-Pedestrian Tracking in Thermal-Visible Surveillance Videos , 2006, 2006 Conference on Computer Vision and Pattern Recognition Workshop (CVPRW'06).

[23]  Denis Simakov,et al.  Feature-Based Sequence-to-Sequence Matching , 2006, International Journal of Computer Vision.

[24]  Helmut E. Bez,et al.  A practical adaptive approach for dynamic background subtraction using an invariant colour model and object tracking , 2005, Pattern Recognit. Lett..