The bang-bang property of time optimal controls for the Burgers equation

The bang-bang property of time optimal controls for the Burgers equations in dimension up to three, with homogeneous Dirichlet boundary conditions and distributed controls acting on an open subset of the domain is established. This relies on an observability estimate from a measurable set in time for linear parabolic equations, with potentials depending on both space and time variables. The proof of the bang-bang property relies on a Kakutani fixed point argument.

[1]  Karl Kunisch,et al.  Time optimal controls of the linear Fitzhugh–Nagumo equation with pointwise control constraints , 2012, Journal of mathematical analysis and applications.

[2]  Lijuan Wang,et al.  The Optimal Time Control of A Phase-Field System , 2003, SIAM J. Control. Optim..

[3]  Kim Dang Phung,et al.  An observability estimate for parabolic equations from a measurable set in time and its applications , 2013 .

[4]  E. Shamarova,et al.  On a Forward-backward Stochastic System Associated to the Burgers Equation , 2010, 1001.3367.

[5]  Viorel Barbu The time optimal control of Navier—Stokes equations , 1997 .

[6]  Gengsheng Wang,et al.  Linfinity-Null Controllability for the Heat Equation and Its Consequences for the Time Optimal Control Problem , 2008, SIAM J. Control. Optim..

[7]  Sergio Guerrero,et al.  Remarks on the null controllability of the Burgers equation , 2005 .

[8]  Lijuan Wang,et al.  Bang-bang property for time optimal control of semilinear heat equation , 2014 .

[9]  Lijuan Wang,et al.  The Bang-Bang principle of time optimal controls for the heat equation with internal controls , 2007, Syst. Control. Lett..

[10]  H. O. Fattorini,et al.  Time-Optimal Control of Solutions of Operational Differenital Equations , 1964 .

[11]  Oleg Yu. Imanuvilov,et al.  On Controllability of Certain Systems Simulating a Fluid Flow , 1995 .

[12]  F. Tröltzsch,et al.  The SQP method for control constrained optimal control of the Burgers equation , 2001 .

[13]  T. Horsin,et al.  On the controllability of the burger equation , 1998 .

[14]  Viorel Barbu,et al.  Analysis and control of nonlinear infinite dimensional systems , 1993 .

[15]  O. Ladyženskaja Linear and Quasilinear Equations of Parabolic Type , 1968 .

[16]  H. O. Fattorini,et al.  Infinite dimensional linear control systems : the time optimal and norm optimal problems , 2005 .

[17]  V. Barbu,et al.  Stochastic Variational Inequalities and Applications to the Total Variation Flow Perturbed by Linear Multiplicative Noise , 2012, 1209.0351.

[18]  A. Refik Bahadir,et al.  A fully implicit finite-difference scheme for two-dimensional Burgers' equations , 2003, Appl. Math. Comput..

[19]  C. Bardos,et al.  Sur l'unicité retrograde des equations paraboliques et quelques questions voisines , 1973 .

[20]  J. Lions Optimal Control of Systems Governed by Partial Differential Equations , 1971 .

[21]  Sergio Guerrero,et al.  Null controllability of the Burgers system with distributed controls , 2007, Syst. Control. Lett..

[22]  Marius Tucsnak,et al.  Maximum Principle and Bang-Bang Property of Time Optimal Controls for Schrödinger-Type Systems , 2013, SIAM J. Control. Optim..

[23]  Karl Kunisch,et al.  TIME OPTIMAL CONTROL OF THE HEAT EQUATION WITH POINTWISE CONTROL CONSTRAINTS , 2013 .