Crack propagation modelling in functionally graded materials using scaled boundary polygons

A recently developed scaled boundary finite element formulation that can model the response of functionally graded materials is further developed to model crack propagation in two-dimensions. This formulation can accurately model the stress singularity at the crack tip in heterogeneous materials. The asymptotic behaviour at the crack tip is analytically represented in the scaled boundary shape functions of a cracked polygon. This enables accurate stress intensity factors to be computed directly from their definitions. Neither local mesh refinement nor asymptotic enrichment functions are required. This novel formulation can be implemented on polygons with an arbitrary number of sides. When modelling crack propagation, the remeshing process is more flexible and leads to only minimal changes to the global mesh structure. Six numerical examples involving crack propagation in functionally graded materials are modelled to demonstrate the salient features of the developed method.

[1]  Robert J. Asaro,et al.  Cracks in functionally graded materials , 1997 .

[2]  N. Sukumar,et al.  Extended finite element method on polygonal and quadtree meshes , 2008 .

[3]  J. Prévost,et al.  Modeling quasi-static crack growth with the extended finite element method Part I: Computer implementation , 2003 .

[4]  Linzhi Wu,et al.  Experimental investigation of the mixed-mode crack propagation in ZrO2/NiCr functionally graded materials , 2009 .

[5]  Soheil Mohammadi,et al.  XFEM fracture analysis of orthotropic functionally graded materials , 2013 .

[6]  Andrew Deeks,et al.  Determination of coefficients of crack tip asymptotic fields using the scaled boundary finite element method , 2005 .

[7]  Zhenjun Yang,et al.  Fully automatic modelling of mixed-mode crack propagation using scaled boundary finite element method , 2006 .

[8]  Chongmin Song,et al.  Probabilistic fracture mechanics by using Monte Carlo simulation and the scaled boundary finite element method , 2011 .

[9]  N. Sukumar,et al.  Conforming polygonal finite elements , 2004 .

[10]  Chongmin Song,et al.  The scaled boundary finite-element method—alias consistent infinitesimal finite-element cell method—for elastodynamics , 1997 .

[11]  F. Tin-Loi,et al.  Dynamic crack propagation simulation with scaled boundary polygon elements and automatic remeshing technique , 2013 .

[12]  F. Erdogan,et al.  On the Crack Extension in Plates Under Plane Loading and Transverse Shear , 1963 .

[13]  Naotake Noda,et al.  Crack-Tip Singular Fields in Nonhomogeneous Materials , 1994 .

[14]  F. Tin-Loi,et al.  A definition and evaluation procedure of generalized stress intensity factors at cracks and multi-material wedges , 2010 .

[15]  M. Koizumi THE CONCEPT OF FGM , 1993 .

[16]  Michael H. Santare,et al.  Numerical Calculation of Stress Intensity Factors in Functionally Graded Materials , 2000 .

[17]  M. R. Eslami,et al.  Embedded interfaces by polytope FEM , 2011 .

[18]  B. Chazelle,et al.  Optimal Convex Decompositions , 1985 .

[19]  Mark Hoffman,et al.  Crack propagation paths in layered, graded composites , 2006 .

[20]  James R. Rice,et al.  Elastic Fracture Mechanics Concepts for Interfacial Cracks , 1988 .

[21]  M. Williams,et al.  On the Stress Distribution at the Base of a Stationary Crack , 1956 .

[22]  Zhongmin Jin,et al.  Some basic fracture mechanics concepts in functionally graded materials , 1996 .

[23]  Wei Gao,et al.  Fracture analysis of piezoelectric materials using the scaled boundary finite element method , 2013 .

[24]  Glaucio H. Paulino,et al.  Unstructured polygonal meshes with adaptive refinement for the numerical simulation of dynamic cohesive fracture , 2014, International Journal of Fracture.

[25]  Hussain,et al.  Strain Energy Release Rate for a Crack Under Combined Mode I and Mode II , 1974 .

[26]  C. Atkinson,et al.  Steady state crack propagation into media with spatially varying elastic properties , 1978 .

[27]  Chongmin Song A matrix function solution for the scaled boundary finite-element equation in statics , 2004 .

[28]  Ted Belytschko,et al.  A finite element method for crack growth without remeshing , 1999 .

[29]  Andrew Deeks,et al.  Fully-automatic modelling of cohesive crack growth using a finite element-scaled boundary finite element coupled method , 2007 .

[30]  Glaucio H. Paulino,et al.  On Fracture Criteria for Mixed-Mode Crack Propagation in Functionally Graded Materials , 2007 .

[31]  Glaucio H. Paulino,et al.  Simulation of Crack Propagation in Functionally Graded Materials Under Mixed-Mode and Non-Proportional Loading , 2004 .

[32]  R. Barsoum On the use of isoparametric finite elements in linear fracture mechanics , 1976 .

[33]  F. Tin-Loi,et al.  Polygon scaled boundary finite elements for crack propagation modelling , 2012 .

[34]  Ch. Zhang,et al.  Transient dynamic analysis of a cracked functionally graded material by a BIEM , 2003 .

[35]  Vladimir Sladek,et al.  Fracture analysis of functionally graded materials by a BEM , 2008 .

[36]  Glaucio H. Paulino,et al.  Mixed-mode fracture of orthotropic functionally graded materials using finite elements and the modified crack closure method , 2002 .

[37]  M. German,et al.  Crack extension modeling with singular quadratic isoparametric elements , 1976 .

[38]  Gang Bao,et al.  Multiple cracking in functionally graded ceramic/metal coatings , 1995 .

[39]  J. Sládek,et al.  An advanced numerical method for computing elastodynamic fracture parameters in functionally graded materials , 2005 .

[40]  Somnath Ghosh,et al.  Extended Voronoi cell finite element model for multiple cohesive crack propagation in brittle materials , 2006 .

[41]  Sharif Rahman,et al.  Mesh-free analysis of cracks in isotropic functionally graded materials , 2003 .

[42]  S. Esterby American Society for Testing and Materials , 2006 .

[43]  G. Paulino,et al.  Finite element evaluation of mixed mode stress intensity factors in functionally graded materials , 2002 .

[44]  E. Wachspress,et al.  A Rational Finite Element Basis , 1975 .

[45]  Noboru Konda,et al.  The mixed mode crack problem in a nonhomogeneous elastic medium , 1994 .

[46]  Francis Tin-Loi,et al.  Scaled boundary polygons with application to fracture analysis of functionally graded materials , 2014 .

[47]  Somnath Ghosh,et al.  Elastic-plastic analysis of arbitrary heterogeneous materials with the Voronoi Cell finite element method , 1995 .

[48]  Janina Maier,et al.  The Scaled Boundary Finite Element Method , 2016 .

[49]  L. Tham,et al.  Boundary element analysis of crack problems in functionally graded materials , 2003 .

[50]  Wilfried Becker,et al.  Computation of 3-D stress singularities for multiple cracks and crack intersections by the scaled boundary finite element method , 2012, International Journal of Fracture.

[51]  J. Dolbow,et al.  On the computation of mixed-mode stress intensity factors in functionally graded materials , 2002 .

[52]  Glaucio H. Paulino,et al.  An accurate scheme for mixed‐mode fracture analysis of functionally graded materials using the interaction integral and micromechanics models , 2003 .

[53]  G. Sih Strain-energy-density factor applied to mixed mode crack problems , 1974 .

[54]  Hans Albert Richard,et al.  Simulation of crack paths in functionally graded materials , 2010 .

[55]  Chuanzeng Zhang,et al.  Stress analysis in anisotropic functionally graded materials by the MLPG method , 2005 .

[56]  Glaucio H. Paulino,et al.  Reduction in mesh bias for dynamic fracture using adaptive splitting of polygonal finite elements , 2014 .

[57]  Hareesh V. Tippur,et al.  COMPOSITIONALLY GRADED MATERIALS WITH CRACKS NORMAL TO THE ELASTIC GRADIENT , 2000 .