Solving Numerical Constraints

[1]  Laurence A. Wolsey,et al.  Non-standard approaches to integer programming , 2002, Discret. Appl. Math..

[2]  Andrei Voronkov,et al.  Equality Reasoning in Sequent-Based Calculi , 2001, Handbook of Automated Reasoning.

[3]  Harald Ganzinger,et al.  Resolution Theorem Proving , 2001, Handbook of Automated Reasoning.

[4]  Albert Rubio,et al.  Paramodulation-Based Theorem Proving , 2001, Handbook of Automated Reasoning.

[5]  Arjen K. Lenstra,et al.  Solving a System of Linear Diophantine Equations with Lower and Upper Bounds on the Variables , 2000, Math. Oper. Res..

[6]  Hirokazu Anai,et al.  Deciding linear-trigonometric problems , 2000, ISSAC.

[7]  Martin W. P. Savelsbergh,et al.  Progress in Linear Programming-Based Algorithms for Integer Programming: An Exposition , 2000, INFORMS J. Comput..

[8]  F. Eisenbrand Gomory-Chvátal cutting planes and the elementary closure of polyhedra , 2000 .

[9]  V. Weispfenning Deciding Linear-Transcendental Problems , 2000 .

[10]  Arnaud Durand,et al.  On the complexity of recognizing the Hilbert basis of a linear diophantine system , 2002, Theor. Comput. Sci..

[11]  Friedrich Eisenbrand,et al.  On the Chvátal Rank of Polytopes in the 0/1 Cube , 1999, Discret. Appl. Math..

[12]  Phokion G. Kolaitis,et al.  On the Complexity of Counting the Hilbert Basis of a Linear Diophnatine System , 1999, LPAR.

[13]  Thomas Sturm,et al.  Reasoning over Networks by Symbolic Methods , 1999, Applicable Algebra in Engineering, Communication and Computing.

[14]  Volker Weispfenning,et al.  Mixed real-integer linear quantifier elimination , 1999, ISSAC '99.

[15]  Matteo Fischetti,et al.  On the separation of maximally violated mod-k cuts , 1999, Math. Program..

[16]  Friedrich Eisenbrand,et al.  Bounds on the Chvátal Rank of Polytopes in the 0/1-Cube , 1999, IPCO.

[17]  Jean-Pierre Seifert,et al.  On the complexity of computing short linearly independent vectors and short bases in a lattice , 1999, STOC '99.

[18]  Kevin D. Wayne,et al.  A polynomial combinatorial algorithm for generalized minimum cost flow , 1999, STOC '99.

[19]  Stephen A. Cook,et al.  An Exponential Lower Bound for the Size of Monotone Real Circuits , 1999, J. Comput. Syst. Sci..

[20]  V. Chandru,et al.  Optimization Methods for Logical Inference , 1999 .

[21]  Friedrich Eisenbrand,et al.  NOTE – On the Membership Problem for the Elementary Closure of a Polyhedron , 1999, Comb..

[22]  Piergiorgio Bertoli,et al.  Specification and Integration of Theorem Provers and Computer Algebra Systems , 1998, Fundam. Informaticae.

[23]  P. Pudlák Sets and Proofs: On the Complexity of the Propositional Calculus , 1999 .

[24]  Fabrice Rouillier,et al.  Symbolic Recipes for Real Solutions , 1999 .

[25]  Thue equations with composite fields , 1999 .

[26]  Alexander Martin,et al.  A counterexample to an integer analogue of Carathéodory's theorem , 1999 .

[27]  Günter M. Ziegler Gröbner Bases and Integer Programming , 1999 .

[28]  Egon Balas,et al.  programming: Properties of the convex hull of feasible points * , 1998 .

[29]  Jean François Pique,et al.  Optimized Q-pivot for Exact Linear Solvers , 1998, CP.

[30]  Alessandro Armando,et al.  Constraint Solving in Logic Programming and in Automated Deduction: A Comparison , 1998, AIMSA.

[31]  Alessandro Armando,et al.  From Integrated Reasoning Specialists to "Plug-and-Play" Reasoning Components , 1998, AISC.

[32]  Farid Ajili,et al.  Integrating Constraint Propagation in Complete Solving of Linear Diophantine Systems , 1998, PLILP/ALP.

[33]  Christopher W. Brown Simplification of truth-invariant cylindrical algebraic decompositions , 1998, ISSAC '98.

[34]  Thomas Sturm,et al.  Approaches to parallel quantifier elimination , 1998, ISSAC '98.

[35]  G. Hanrot,et al.  Solving superelliptic Diophantine equations by Baker's method , 1998, Compositio Mathematica.

[36]  Arjen K. Lenstra,et al.  Solving a Linear Diophantine Equation with Lower and Upper Bounds on the Variables , 1998, IPCO.

[37]  Alexander Bockmayr,et al.  Modelling discrete optimisation problems inconstraint logic programming , 1998, Ann. Oper. Res..

[38]  Joachim Apel,et al.  The Theory of Involutive Divisions and an Application to Hilbert Function Computations , 1998, J. Symb. Comput..

[39]  Miklós Ajtai,et al.  The shortest vector problem in L2 is NP-hard for randomized reductions (extended abstract) , 1998, STOC '98.

[40]  Alexander Bockmayr,et al.  Branch and Infer: A Unifying Framework for Integer and Finite Domain Constraint Programming , 1998, INFORMS J. Comput..

[41]  F. Ajili Contraintes Diophantiennes Linéaires : résolution et coopération inter-résolveurs. (Linear diophantine constraints : solving and cooperation of solvers) , 1998 .

[42]  G. E. Collins,et al.  Quantifier Elimination by Cylindrical Algebraic Decomposition — Twenty Years of Progress , 1998 .

[43]  V. Weispfenning A New Approach to Quantifier Elimination for Real Algebra , 1998 .

[44]  S. Basu,et al.  A New Algorithm to Find a Point in Every Cell Defined by a Family of Polynomials , 1998 .

[45]  Marie-Françoise Roy,et al.  Sturm—Habicht Sequences, Determinants and Real Roots of Univariate Polynomials , 1998 .

[46]  L. González-Vega A Combinatorial Algorithm Solving Some Quantifier Elimination Problems , 1998 .

[47]  David A. Cox,et al.  Using Algebraic Geometry , 1998 .

[48]  Rekha R. Thomas Gröbner Bases in Integer Programming , 1998 .

[49]  K. Madlener,et al.  String Rewriting and Gröbner Bases — A General Approach to Monoid and Group Rings , 1998 .

[50]  George Havas,et al.  Extended GCD and Hermite Normal Form Algorithms via Lattice Basis Reduction , 1998, Exp. Math..

[51]  Robert Weismantel,et al.  The height of minimal Hilbert bases , 1997 .

[52]  Leonid Khachiyan,et al.  Computing integral points in convex semi-algebraic sets , 1997, Proceedings 38th Annual Symposium on Foundations of Computer Science.

[53]  George Havas,et al.  Bohdan S. Majewski: Integer Matrix Diagonalization , 1997, J. Symb. Comput..

[54]  Pavel Pudlák,et al.  Lower bounds for resolution and cutting plane proofs and monotone computations , 1997, Journal of Symbolic Logic.

[55]  Volker Weispfenning,et al.  Simulation and Optimization by Quantifier Elimination , 1997, J. Symb. Comput..

[56]  Nikolaj Bjørner,et al.  A Practical Integration of First-Order Reasoning and Decision Procedures , 1997, CADE.

[57]  George Havas,et al.  On the worst-case complexity of integer Gaussian elimination , 1997, ISSAC.

[58]  Volker Weispfenning,et al.  Complexity and uniformity of elimination in Presburger arithmetic , 1997, ISSAC.

[59]  Ana Paula Tomás,et al.  Solving Linear Diophantine Equations Using the Geometric Structure of the Solution Space , 1997, RTA.

[60]  Thomas Sturm,et al.  REDLOG: computer algebra meets computer logic , 1997, SIGS.

[61]  Martin Henk Note on Shortest and Nearest Lattice Vectors , 1997, Inf. Process. Lett..

[62]  Evelyne Contejean,et al.  Avoiding Slack Variables in the Solving of Linear Diophantine Equations and Inequations , 1997, Theor. Comput. Sci..

[63]  Michael Clausen,et al.  Algebraic complexity theory , 1997, Grundlehren der mathematischen Wissenschaften.

[64]  Volker Weispfenning,et al.  Quantifier Elimination for Real Algebra — the Quadratic Case and Beyond , 1997, Applicable Algebra in Engineering, Communication and Computing.

[65]  Thomas Sturm,et al.  Real Quantifier Elimination in Practice , 1997, Algorithmic Algebra and Number Theory.

[66]  David A. Cox,et al.  Ideals, Varieties, and Algorithms , 1997 .

[67]  John N. Tsitsiklis,et al.  Introduction to linear optimization , 1997, Athena scientific optimization and computation series.

[68]  Pascal Van Hentenryck,et al.  Strategic directions in constraint programming , 1996, CSUR.

[69]  Guillaume Hanrot,et al.  Solving Thue Equations of High Degree , 1996 .

[70]  George Labahn,et al.  Asymptotically fast computation of Hermite normal forms of integer matrices , 1996, ISSAC '96.

[71]  Thomas Sturm,et al.  Computational Geometry Problems in REDLOG , 1996, Automated Deduction in Geometry.

[72]  Deepak Kapur,et al.  Automated Geometric Reasoning: Dixon Resultants, Gröbner Bases, and Characteristic Sets , 1996, Automated Deduction in Geometry.

[73]  E. Balas,et al.  Mixed 0-1 Programming by Lift-and-Project in a Branch-and-Cut Framework , 1996 .

[74]  Manolis Koubarakis,et al.  Tractable Disjunctions of Linear Constraints , 1996, CP.

[75]  Egon Balas,et al.  Gomory cuts revisited , 1996, Oper. Res. Lett..

[76]  Reinhard Bündgen,et al.  Buchberger's Algorithm: The Term Rewriter's Point of View , 1996, Theor. Comput. Sci..

[77]  Hubert Comon-Lundh,et al.  Diophantine Equations, Presburger Arithmetic and Finite Automata , 1996, CAAP.

[78]  Stephen P. Boyd,et al.  Semidefinite Programming , 1996, SIAM Rev..

[79]  Fabrice Rouillier,et al.  Algorithmes efficaces pour l'etude des zeros reels des systemes polynomiaux , 1996 .

[80]  Rekha R. Thomas A Geometric Buchberger Algorithm for Integer Programming , 1995, Math. Oper. Res..

[81]  John F. Canny,et al.  Efficient Inceremtal Algorithms for the Sparse Resultant and the Mixed Volume , 1995, J. Symb. Comput..

[82]  Kim Marriott,et al.  Incremental Constraint Deletion in Systems of Linear Constraints , 1995, Inf. Process. Lett..

[83]  Joachim Apel,et al.  A Gröbner Approach to Involutive Bases , 1995, J. Symb. Comput..

[84]  A. Wiles,et al.  Ring-Theoretic Properties of Certain Hecke Algebras , 1995 .

[85]  A. Wiles Modular Elliptic Curves and Fermat′s Last Theorem(抜粋) (フェルマ-予想がついに解けた!?) , 1995 .

[86]  Habib Abdulrab,et al.  General Solution of Systems of Linear Diophantine Equations and Inequations , 1995, RTA.

[87]  Deepak Kapur,et al.  Comparison of various multivariate resultant formulations , 1995, ISSAC '95.

[88]  Dongming Wang,et al.  Reasoning about Geometric Problems using an Elimination Method , 1995 .

[89]  Roland H. C. Yap,et al.  Linear Equation Solving for Constraint Logic Programming , 1995, ICLP.

[90]  Alexander Bockmayr,et al.  Finite Domain and Cutting Plane Techniques in CLP(PB) , 1995, ICLP.

[91]  Joseph Naor,et al.  Simple and Fast Algorithms for Linear and Integer Programs With Two Variables per Inequality , 1994, SIAM J. Comput..

[92]  Jean-Louis Imbert Redundancy, Variable Elimination and Linear Disequations , 1994, ILPS.

[93]  Deepak Kapur,et al.  An Overview of the Tecton Proof System , 1994, Theor. Comput. Sci..

[94]  Evelyne Contejean,et al.  An Efficient Incremental Algorithm for Solving Systems of Linear Diophantine Equations , 1994, Inf. Comput..

[95]  Deepak Kapur,et al.  Algebraic and geometric reasoning using Dixon resultants , 1994, ISSAC '94.

[96]  Thanases Pheidas,et al.  Extensions of Hilbert's tenth problem , 1994, Journal of Symbolic Logic.

[97]  Barry Mazur,et al.  Questions of decidability and undecidability in Number Theory , 1994, Journal of Symbolic Logic.

[98]  Jean-Louis Imbert Linear Constraint Solving in CLP-Languages , 1994, Constraint Programming.

[99]  Alexander Bockmayr,et al.  Solving Pseudo-Boolean Constraints , 1994, Constraint Programming.

[100]  Hélène Kirchner,et al.  On the Use of Constraints in Automated Deduction , 1994, Constraint Programming.

[101]  Gilles Pesant,et al.  QUAD-CLP(R): Adding the Power of Quadratic Constraints , 1994, PPCP.

[102]  Michael J. Maher,et al.  Constraint Logic Programming: A Survey , 1994, J. Log. Program..

[103]  John N. Hooker,et al.  Logic-Based Methods for Optimization , 1994, PPCP.

[104]  Sanjeev Arora,et al.  The Hardness of Approximate Optimia in Lattices, Codes, and Systems of Linear Equations , 1993, FOCS.

[105]  Ana Paula Tomás,et al.  Fast Methods for Solving Linear Diophantine Equations , 1993, EPIA.

[106]  G. Havas,et al.  Recognizing badly presented Z-modules , 1993, math/9406205.

[107]  Christian Lengauer,et al.  Loop Parallelization in the Polytope Model , 1993, CONCUR.

[108]  Dongming Wang,et al.  An Elimination Method for Polynomial Systems , 1993, J. Symb. Comput..

[109]  David Shallcross,et al.  An Implementation of the Generalized Basis Reduction Algorithm for Integer Programming , 1993, INFORMS J. Comput..

[110]  Pierre Hansen,et al.  State-of-the-Art Survey - Constrained Nonlinear 0-1 Programming , 1993, INFORMS J. Comput..

[111]  Egon Balas,et al.  A lift-and-project cutting plane algorithm for mixed 0–1 programs , 1993, Math. Program..

[112]  Dinesh Manocha,et al.  Multipolynomial Resultant Algorithms , 1993, J. Symb. Comput..

[113]  Dongming Wang,et al.  An Elimination Method Based on Seidenberg’s Theory and Its Applications , 1993 .

[114]  Vijay Chandru,et al.  Variable Elimination in Linear Constraints , 1993, Comput. J..

[115]  Jean-Louis Imbert Variable Elimination for Disequations in Generalized Linear Constraint Systems , 1993, Comput. J..

[116]  Rüdiger Loos,et al.  Applying Linear Quantifier Elimination , 1993, Comput. J..

[117]  Jean-Louis Imbert Fourier's Elimination: Which to Choose? , 1993, PPCP.

[118]  Claude Kirchner,et al.  AC-Unification Race: The System Solving Approach, Implementation and Benchmarks , 1992, J. Symb. Comput..

[119]  Volker Weispfenning,et al.  Comprehensive Gröbner Bases , 1992, J. Symb. Comput..

[120]  Lou van den Dries,et al.  Quantifier Elimination for Modules with Scalar Variables , 1992, Ann. Pure Appl. Log..

[121]  Roland H. C. Yap,et al.  The CLP( R ) language and system , 1992, TOPL.

[122]  James Renegar,et al.  On the Computational Complexity and Geometry of the First-Order Theory of the Reals, Part III: Quantifier Elimination , 1992, J. Symb. Comput..

[123]  James Renegar,et al.  On the Computational Complexity and Geometry of the First-Order Theory of the Reals, Part II: The General Decision Problem. Preliminaries for Quantifier Elimination , 1992, J. Symb. Comput..

[124]  James Renegar,et al.  On the Computational Complexity and Geometry of the First-Order Theory of the Reals, Part I: Introduction. Preliminaries. The Geometry of Semi-Algebraic Sets. The Decision Problem for the Existential Theory of the Reals , 1992, J. Symb. Comput..

[125]  Uriel G. Rothblum,et al.  Dines—Fourier—Motzkin quantifier elimination and an application of corresponding transfer principles over ordered fields , 1992, Math. Program..

[126]  Eric Domenjoud A technical note on AC-unification. The number of minimal unifiers of the equation a x 1 +c+ a x p = d AC b y 1 +c+ b y q , 1992 .

[127]  Daniel Lazard,et al.  Solving Zero-Dimensional Algebraic Systems , 1992, J. Symb. Comput..

[128]  Jean-Louis Lassez,et al.  A Canonical Form for Generalized Linear Constraints , 1992, J. Symb. Comput..

[129]  László Lovász,et al.  The Generalized Basis Reduction Algorithm , 1990, Math. Oper. Res..

[130]  Keith O. Geddes,et al.  Algorithms for computer algebra , 1992 .

[131]  Alexander Bockmayr Logic Programming with Pseudo-Boolean Constraints , 1991, WCLP.

[132]  Hans-Jürgen Bürckert,et al.  A Resolution Principle for a Logic with Restricted Quantifiers , 1991, Lecture Notes in Computer Science.

[133]  Peter J. Stuckey Incremental Linear Constraint Solving and Detection of Implicit Equalities , 1991, INFORMS J. Comput..

[134]  Carlo Traverso,et al.  Buchberger Algorithm and Integer Programming , 1991, AAECC.

[135]  Ana Paula Tomás,et al.  Solving Linear Constraints on Finite Domains Through Parsing , 1991, EPIA.

[136]  Daniel Lazard,et al.  A new method for solving algebraic systems of positive dimension , 1991, Discret. Appl. Math..

[137]  Eric Domenjoud,et al.  Solving Systems of Linear Diophantine Equations: An Algebraic Approach , 1991, MFCS.

[138]  George E. Collins,et al.  Partial Cylindrical Algebraic Decomposition for Quantifier Elimination , 1991, J. Symb. Comput..

[139]  William Y. Sit A theory for parametric linear systems , 1991, ISSAC '91.

[140]  Loïc Pottier Minimal Solutions of Linear Diophantine Systems: Bounds and Algorithms , 1991, RTA.

[141]  Edith Cohen,et al.  Improved algorithms for linear inequalities with two variables per inequality , 1991, STOC '91.

[142]  Henri Lombardi,et al.  Effective real Nullstellensatz and variants , 1991 .

[143]  Victor Y. Pan,et al.  Complexity of Algorithms for Linear Systems of Equations , 1991 .

[144]  Claude Kirchner,et al.  Solving Equations in Abstract Algebras: A Rule-Based Survey of Unification , 1991, Computational Logic - Essays in Honor of Alan Robinson.

[145]  Hubert Comon,et al.  Disunification: A Survey. , 1991 .

[146]  James Lee Hafner,et al.  Asymptotically fast triangulation of matrices over rings , 1991, SODA '90.

[147]  Volker Weispfenning Existential equivalence of ordered abelian groups with parameters , 1990, Arch. Math. Log..

[148]  Volker Weispfenning The Complexity of Almost Linear Diophantine Problems , 1990, J. Symb. Comput..

[149]  Leo Joskowicz,et al.  Reasoning About Linear Constraints Using Parametric Queries , 1990, FSTTCS.

[150]  Stephen A. Vavasis,et al.  Quadratic Programming is in NP , 1990, Inf. Process. Lett..

[151]  Jean-François Romeuf A Polynomial Algorithm for Solving Systems of Two Linear Diophantine Equations , 1990, Theor. Comput. Sci..

[152]  H. Hong An improvement of the projection operator in cylindrical algebraic decomposition , 1990, ISSAC '90.

[153]  András Sebö,et al.  Hilbert Bases, Caratheodory's Theorem and Combinatorial Optimization , 1990, IPCO.

[154]  Jean-Louis Lassez,et al.  Querying constraints , 1990, PODS '90.

[155]  Alain Colmerauer,et al.  An introduction to Prolog III , 1989, CACM.

[156]  Franz Baader,et al.  Unification theory , 1986, Decis. Support Syst..

[157]  C. Kirchner,et al.  Deduction with symbolic constraints , 1990 .

[158]  Bert Gerards,et al.  On Cutting Planes and Matrices , 1990, Polyhedral Combinatorics.

[159]  J. Renegar Recent Progress on the Complexity of the Decision Problem for the Reals , 1990, Discrete and Computational Geometry.

[160]  Pierre Hansen,et al.  Constrained Nonlinear 0-1 Programming , 1989 .

[161]  Costas S. Iliopoulos,et al.  Worst-Case Complexity Bounds on Algorithms for Computing the Canonical Structure of Finite Abelian Groups and the Hermite and Smith Normal Forms of an Integer Matrix , 1989, SIAM J. Comput..

[162]  Costas S. Iliopoulos Worst-Case Complexity Bounds on Algorithms for Computing the Canonical Structure of Infinite Abelian Groups and Solving Systems of Linear Diophantine Equations , 1989, SIAM J. Comput..

[163]  Tomás Recio,et al.  Sturm-Habicht sequence , 1989, ISSAC '89.

[164]  Michael Clausen,et al.  Efficient Solution of Linear Diophantine Equations , 1989, J. Symb. Comput..

[165]  Jörg H. Siekmann,et al.  The Undecidability of the DA-Unification Problem , 1989, J. Symb. Log..

[166]  Winfried Neun,et al.  Symbolic solution of large stationary chemical kinetics problems , 1989, IMPACT Comput. Sci. Eng..

[167]  De Weger,et al.  de Weger: On the practical solution of the Thue equation , 1989 .

[168]  Joos Heintz,et al.  Sur la complexité du principe de Tarski-Seidenberg , 1989 .

[169]  Habib Abdulrab,et al.  Solving Systems of Linear Diophantine Equations and Word Equations , 1989, RTA.

[170]  A. Peressini,et al.  The Mathematics Of Nonlinear Programming , 1988 .

[171]  Heinz Kredel,et al.  Computing Dimension and Independent Sets for Polynomial Ideals , 1988, J. Symb. Comput..

[172]  Robert S. Boyer,et al.  Integrating decision procedures into heuristic theorem provers: a case study of linear arithmetic , 1988 .

[173]  Thomas Käufl,et al.  Reasoning about Systems of Linear Inequalities , 1988, CADE.

[174]  John N. Hooker,et al.  A quantitative approach to logical inference , 1988, Decis. Support Syst..

[175]  D. Grigor'ev Complexity of deciding Tarski algebra , 1988 .

[176]  James H. Davenport,et al.  Real Quantifier Elimination is Doubly Exponential , 1988, J. Symb. Comput..

[177]  Volker Weispfenning,et al.  The Complexity of Linear Problems in Fields , 1988, Journal of symbolic computation.

[178]  John N. Hooker,et al.  Generalized resolution and cutting planes , 1988 .

[179]  Pascal Van Hentenryck,et al.  The Constraint Logic Programming Language CHIP , 1988, FGCS.

[180]  S. Chou Mechanical Geometry Theorem Proving , 1987 .

[181]  William J. Cook,et al.  On the complexity of cutting-plane proofs , 1987, Discret. Appl. Math..

[182]  Shih Ping Tung,et al.  Computational Complexities of Diophantine Equations with Parameters , 1987, J. Algorithms.

[183]  Joxan Jaffar,et al.  Constraint logic programming , 1987, POPL '87.

[184]  Leslie E. Trotter,et al.  Hermite Normal Form Computation Using Modulo Determinant Arithmetic , 1987, Math. Oper. Res..

[185]  Don Coppersmith,et al.  Matrix multiplication via arithmetic progressions , 1987, STOC.

[186]  M-F Roy,et al.  Géométrie algébrique réelle , 1987 .

[187]  András Frank,et al.  An application of simultaneous diophantine approximation in combinatorial optimization , 1987, Comb..

[188]  H. P. Williams Fourier's Method of Linear Programming and its Dual , 1986 .

[189]  William J. Cook,et al.  Sensitivity theorems in integer linear programming , 1986, Math. Program..

[190]  Éva Tardos,et al.  A Strongly Polynomial Algorithm to Solve Combinatorial Linear Programs , 1986, Oper. Res..

[191]  Philippe le Chenadec Canonical forms in finitely presented algebras , 1984, Research notes in theoretical computer science.

[192]  Eduardo D. Sontag,et al.  Real Addition and the Polynomial Hierarchy , 1985, Inf. Process. Lett..

[193]  George E. Collins,et al.  The SAC-2 Computer Algebra System , 1985, European Conference on Computer Algebra.

[194]  Eitan M. Gurari Decidable problems for powerful programs , 1985, JACM.

[195]  Armin Haken,et al.  The Intractability of Resolution , 1985, Theor. Comput. Sci..

[196]  John H. Reif,et al.  The complexity of elementary algebra and geometry , 1984, STOC '84.

[197]  Narendra Karmarkar,et al.  A new polynomial-time algorithm for linear programming , 1984, STOC '84.

[198]  Robert E. Shostak,et al.  Deciding Combinations of Theories , 1982, JACM.

[199]  B. Scarpellini Complexity of subcases of Presburger arithmetic , 1984 .

[200]  Nimrod Megiddo,et al.  Linear Programming in Linear Time When the Dimension Is Fixed , 1984, JACM.

[201]  Hendrik W. Lenstra,et al.  Integer Programming with a Fixed Number of Variables , 1983, Math. Oper. Res..

[202]  Hugo Volger Turing Machines with Linear Alternation, Theories of Bounded Concatenation and the Decision Problem of First Order Theories , 1983, Theor. Comput. Sci..

[203]  László Lovász,et al.  Factoring polynomials with rational coefficients , 1982 .

[204]  Jeffrey C. Lagarias,et al.  The computational complexity of simultaneous Diophantine approximation problems , 1982, 23rd Annual Symposium on Foundations of Computer Science (sfcs 1982).

[205]  Karl Heinz Borgwardt,et al.  Some Distribution-Independent Results About the Asymptotic Order of the Average Number of Pivot Steps of the Simplex Method , 1982, Math. Oper. Res..

[206]  Martin Fürer,et al.  The Complexity of Presburger Arithmetic with Bounded Quantifier Alternation Depth , 1982, Theor. Comput. Sci..

[207]  George E. Collins,et al.  Algorithms for the Solution of Systems of Linear Diophantine Equations , 1982, SIAM J. Comput..

[208]  F. Grunewald,et al.  Mathematical Proceedings of the Cambridge Philosophical Society How to solve a quadratic equation in integers , 2007 .

[209]  Warren D. Goldfarb,et al.  The Undecidability of the Second-Order Unification Problem , 1981, Theor. Comput. Sci..

[210]  Eitan M. Gurari,et al.  The Complexity of the Equivalence Problem for two Characterizations of Presburger Sets , 1981, Theor. Comput. Sci..

[211]  Leonard Berman,et al.  The Complexity of Logical Theories , 1980, Theor. Comput. Sci..

[212]  Alexander Schrijver,et al.  On Cutting Planes , 1980 .

[213]  L. Khachiyan Polynomial algorithms in linear programming , 1980 .

[214]  Hanif D. Sherali,et al.  Optimization with disjunctive constraints , 1980 .

[215]  David Jefferson,et al.  Verification Decidability of Presburger Array Programs , 1980, JACM.

[216]  Ravi Kannan,et al.  Polynomial Algorithms for Computing the Smith and Hermite Normal Forms of an Integer Matrix , 1979, SIAM J. Comput..

[217]  Greg Nelson,et al.  Simplification by Cooperating Decision Procedures , 1979, TOPL.

[218]  Eitan M. Gurari,et al.  An NP-Complete Number-Theoretic Problem , 1979, JACM.

[219]  Robert E. Shostak,et al.  A Practical Decision Procedure for Arithmetic with Function Symbols , 1979, JACM.

[220]  J. Ferrante,et al.  The computational complexity of logical theories , 1979 .

[221]  Charles E. Blair,et al.  A converse for disjunctive constraints , 1978 .

[222]  Systems of standard equations in words in an n-layer alphabet of unknowns , 1978 .

[223]  Donald W. Loveland,et al.  Presburger arithmetic with bounded quantifier alternation , 1978, STOC.

[224]  Leonard M. Adleman,et al.  NP-Complete Decision Problems for Binary Quadratics , 1978, J. Comput. Syst. Sci..

[225]  Gérard P. Huet,et al.  An Algorithm to Generate the Basis of Solutions to Homogeneous Linear Diophantine Equations , 1978, Inf. Process. Lett..

[226]  L. Lipshitz The Diophantine problem for addition and divisibility , 1978 .

[227]  J. Gathen,et al.  A bound on solutions of linear integer equalities and inequalities , 1978 .

[228]  Robert E. Shostak,et al.  On the SUP-INF Method for Proving Presburger Formulas , 1977, JACM.

[229]  Robert G. Bland,et al.  New Finite Pivoting Rules for the Simplex Method , 1977, Math. Oper. Res..

[230]  Robert G. Jeroslow,et al.  Cutting-Plane Theory: Disjunctive Methods , 1977 .

[231]  Alan K. Mackworth Consistency in Networks of Relations , 1977, Artif. Intell..

[232]  Joachim von zur Gathen,et al.  Weitere zum Erfüllungsproblem polynomial äquivalente kombinatorische Aufgaben , 1976, Komplexität von Entscheidungsproblemen 1976.

[233]  W. Bledsoe A new method for proving certain Presburger formulas , 1975, IJCAI 1975.

[234]  Two model theoretic proofs of Rückert’s Nullstellensatz , 1975 .

[235]  M. Fischer,et al.  SUPER-EXPONENTIAL COMPLEXITY OF PRESBURGER ARITHMETIC , 1974 .

[236]  R. Duffin On fourier’s analysis of linear inequality systems , 1974 .

[237]  Richard P. Stanley,et al.  Linear homogeneous Diophantine equations and magic labelings of graphs , 1973 .

[238]  Derek C. Oppen,et al.  Elementary bounds for presburger arithmetic , 1973, STOC.

[239]  Vasek Chvátal,et al.  Edmonds polytopes and a hierarchy of combinatorial problems , 1973, Discret. Math..

[240]  George B. Dantzig,et al.  Fourier-Motzkin Elimination and Its Dual , 1973, J. Comb. Theory A.

[241]  C. Siegel Zur Theorie der quadratischen Formen , 1972 .

[242]  Gérard Huet,et al.  Constrained resolution: a complete method for higher-order logic. , 1972 .

[243]  V. Klee,et al.  HOW GOOD IS THE SIMPLEX ALGORITHM , 1970 .

[244]  V. Strassen Gaussian elimination is not optimal , 1969 .

[245]  E. Bareiss Sylvester’s identity and multistep integer-preserving Gaussian elimination , 1968 .

[246]  A. Baker,et al.  Contributions to the theory of diophantine equations I. On the representation of integers by binary forms , 1968, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[247]  J. Edmonds Systems of distinct representatives and linear algebra , 1967 .

[248]  George B. Dantzig,et al.  Linear programming and extensions , 1965 .

[249]  H. Putnam,et al.  The Decision Problem for Exponential Diophantine Equations , 1961 .

[250]  A. Seidenberg An elimination theory for differential algebra , 1959 .

[251]  Ralph E. Gomory,et al.  An algorithm for integer solutions to linear programs , 1958 .

[252]  A. Seidenberg Some remarks on Hilbert's Nullstellensatz , 1956 .

[253]  A. Tarski A Decision Method for Elementary Algebra and Geometry , 2023 .

[254]  L. Griffiths,et al.  A note on linear homogeneous diophantine equations , 1946 .

[255]  Th. Motzkin Beiträge zur Theorie der linearen Ungleichungen , 1936 .

[256]  K. Gödel Über formal unentscheidbare Sätze der Principia Mathematica und verwandter Systeme I , 1931 .

[257]  L. L. Dines Systems of Linear Inequalities , 1919 .

[258]  D. Hilbert Über die Theorie der algebraischen Formen , 1890 .

[259]  P. Gordan Ueber die Auflösung linearer Gleichungen mit reellen Coefficienten , 1873 .

[260]  Henry J. Stephen Smith,et al.  XV. On systems of linear indeterminate equations and congruences , 1861, Philosophical Transactions of the Royal Society of London.