Solving Numerical Constraints
暂无分享,去创建一个
Michael J. Maher | Volker Weispfenning | Alexander Bockmayr | V. Weispfenning | M. Maher | A. Bockmayr
[1] Laurence A. Wolsey,et al. Non-standard approaches to integer programming , 2002, Discret. Appl. Math..
[2] Andrei Voronkov,et al. Equality Reasoning in Sequent-Based Calculi , 2001, Handbook of Automated Reasoning.
[3] Harald Ganzinger,et al. Resolution Theorem Proving , 2001, Handbook of Automated Reasoning.
[4] Albert Rubio,et al. Paramodulation-Based Theorem Proving , 2001, Handbook of Automated Reasoning.
[5] Arjen K. Lenstra,et al. Solving a System of Linear Diophantine Equations with Lower and Upper Bounds on the Variables , 2000, Math. Oper. Res..
[6] Hirokazu Anai,et al. Deciding linear-trigonometric problems , 2000, ISSAC.
[7] Martin W. P. Savelsbergh,et al. Progress in Linear Programming-Based Algorithms for Integer Programming: An Exposition , 2000, INFORMS J. Comput..
[8] F. Eisenbrand. Gomory-Chvátal cutting planes and the elementary closure of polyhedra , 2000 .
[9] V. Weispfenning. Deciding Linear-Transcendental Problems , 2000 .
[10] Arnaud Durand,et al. On the complexity of recognizing the Hilbert basis of a linear diophantine system , 2002, Theor. Comput. Sci..
[11] Friedrich Eisenbrand,et al. On the Chvátal Rank of Polytopes in the 0/1 Cube , 1999, Discret. Appl. Math..
[12] Phokion G. Kolaitis,et al. On the Complexity of Counting the Hilbert Basis of a Linear Diophnatine System , 1999, LPAR.
[13] Thomas Sturm,et al. Reasoning over Networks by Symbolic Methods , 1999, Applicable Algebra in Engineering, Communication and Computing.
[14] Volker Weispfenning,et al. Mixed real-integer linear quantifier elimination , 1999, ISSAC '99.
[15] Matteo Fischetti,et al. On the separation of maximally violated mod-k cuts , 1999, Math. Program..
[16] Friedrich Eisenbrand,et al. Bounds on the Chvátal Rank of Polytopes in the 0/1-Cube , 1999, IPCO.
[17] Jean-Pierre Seifert,et al. On the complexity of computing short linearly independent vectors and short bases in a lattice , 1999, STOC '99.
[18] Kevin D. Wayne,et al. A polynomial combinatorial algorithm for generalized minimum cost flow , 1999, STOC '99.
[19] Stephen A. Cook,et al. An Exponential Lower Bound for the Size of Monotone Real Circuits , 1999, J. Comput. Syst. Sci..
[20] V. Chandru,et al. Optimization Methods for Logical Inference , 1999 .
[21] Friedrich Eisenbrand,et al. NOTE – On the Membership Problem for the Elementary Closure of a Polyhedron , 1999, Comb..
[22] Piergiorgio Bertoli,et al. Specification and Integration of Theorem Provers and Computer Algebra Systems , 1998, Fundam. Informaticae.
[23] P. Pudlák. Sets and Proofs: On the Complexity of the Propositional Calculus , 1999 .
[24] Fabrice Rouillier,et al. Symbolic Recipes for Real Solutions , 1999 .
[25] Thue equations with composite fields , 1999 .
[26] Alexander Martin,et al. A counterexample to an integer analogue of Carathéodory's theorem , 1999 .
[27] Günter M. Ziegler. Gröbner Bases and Integer Programming , 1999 .
[28] Egon Balas,et al. programming: Properties of the convex hull of feasible points * , 1998 .
[29] Jean François Pique,et al. Optimized Q-pivot for Exact Linear Solvers , 1998, CP.
[30] Alessandro Armando,et al. Constraint Solving in Logic Programming and in Automated Deduction: A Comparison , 1998, AIMSA.
[31] Alessandro Armando,et al. From Integrated Reasoning Specialists to "Plug-and-Play" Reasoning Components , 1998, AISC.
[32] Farid Ajili,et al. Integrating Constraint Propagation in Complete Solving of Linear Diophantine Systems , 1998, PLILP/ALP.
[33] Christopher W. Brown. Simplification of truth-invariant cylindrical algebraic decompositions , 1998, ISSAC '98.
[34] Thomas Sturm,et al. Approaches to parallel quantifier elimination , 1998, ISSAC '98.
[35] G. Hanrot,et al. Solving superelliptic Diophantine equations by Baker's method , 1998, Compositio Mathematica.
[36] Arjen K. Lenstra,et al. Solving a Linear Diophantine Equation with Lower and Upper Bounds on the Variables , 1998, IPCO.
[37] Alexander Bockmayr,et al. Modelling discrete optimisation problems inconstraint logic programming , 1998, Ann. Oper. Res..
[38] Joachim Apel,et al. The Theory of Involutive Divisions and an Application to Hilbert Function Computations , 1998, J. Symb. Comput..
[39] Miklós Ajtai,et al. The shortest vector problem in L2 is NP-hard for randomized reductions (extended abstract) , 1998, STOC '98.
[40] Alexander Bockmayr,et al. Branch and Infer: A Unifying Framework for Integer and Finite Domain Constraint Programming , 1998, INFORMS J. Comput..
[41] F. Ajili. Contraintes Diophantiennes Linéaires : résolution et coopération inter-résolveurs. (Linear diophantine constraints : solving and cooperation of solvers) , 1998 .
[42] G. E. Collins,et al. Quantifier Elimination by Cylindrical Algebraic Decomposition — Twenty Years of Progress , 1998 .
[43] V. Weispfenning. A New Approach to Quantifier Elimination for Real Algebra , 1998 .
[44] S. Basu,et al. A New Algorithm to Find a Point in Every Cell Defined by a Family of Polynomials , 1998 .
[45] Marie-Françoise Roy,et al. Sturm—Habicht Sequences, Determinants and Real Roots of Univariate Polynomials , 1998 .
[46] L. González-Vega. A Combinatorial Algorithm Solving Some Quantifier Elimination Problems , 1998 .
[47] David A. Cox,et al. Using Algebraic Geometry , 1998 .
[48] Rekha R. Thomas. Gröbner Bases in Integer Programming , 1998 .
[49] K. Madlener,et al. String Rewriting and Gröbner Bases — A General Approach to Monoid and Group Rings , 1998 .
[50] George Havas,et al. Extended GCD and Hermite Normal Form Algorithms via Lattice Basis Reduction , 1998, Exp. Math..
[51] Robert Weismantel,et al. The height of minimal Hilbert bases , 1997 .
[52] Leonid Khachiyan,et al. Computing integral points in convex semi-algebraic sets , 1997, Proceedings 38th Annual Symposium on Foundations of Computer Science.
[53] George Havas,et al. Bohdan S. Majewski: Integer Matrix Diagonalization , 1997, J. Symb. Comput..
[54] Pavel Pudlák,et al. Lower bounds for resolution and cutting plane proofs and monotone computations , 1997, Journal of Symbolic Logic.
[55] Volker Weispfenning,et al. Simulation and Optimization by Quantifier Elimination , 1997, J. Symb. Comput..
[56] Nikolaj Bjørner,et al. A Practical Integration of First-Order Reasoning and Decision Procedures , 1997, CADE.
[57] George Havas,et al. On the worst-case complexity of integer Gaussian elimination , 1997, ISSAC.
[58] Volker Weispfenning,et al. Complexity and uniformity of elimination in Presburger arithmetic , 1997, ISSAC.
[59] Ana Paula Tomás,et al. Solving Linear Diophantine Equations Using the Geometric Structure of the Solution Space , 1997, RTA.
[60] Thomas Sturm,et al. REDLOG: computer algebra meets computer logic , 1997, SIGS.
[61] Martin Henk. Note on Shortest and Nearest Lattice Vectors , 1997, Inf. Process. Lett..
[62] Evelyne Contejean,et al. Avoiding Slack Variables in the Solving of Linear Diophantine Equations and Inequations , 1997, Theor. Comput. Sci..
[63] Michael Clausen,et al. Algebraic complexity theory , 1997, Grundlehren der mathematischen Wissenschaften.
[64] Volker Weispfenning,et al. Quantifier Elimination for Real Algebra — the Quadratic Case and Beyond , 1997, Applicable Algebra in Engineering, Communication and Computing.
[65] Thomas Sturm,et al. Real Quantifier Elimination in Practice , 1997, Algorithmic Algebra and Number Theory.
[66] David A. Cox,et al. Ideals, Varieties, and Algorithms , 1997 .
[67] John N. Tsitsiklis,et al. Introduction to linear optimization , 1997, Athena scientific optimization and computation series.
[68] Pascal Van Hentenryck,et al. Strategic directions in constraint programming , 1996, CSUR.
[69] Guillaume Hanrot,et al. Solving Thue Equations of High Degree , 1996 .
[70] George Labahn,et al. Asymptotically fast computation of Hermite normal forms of integer matrices , 1996, ISSAC '96.
[71] Thomas Sturm,et al. Computational Geometry Problems in REDLOG , 1996, Automated Deduction in Geometry.
[72] Deepak Kapur,et al. Automated Geometric Reasoning: Dixon Resultants, Gröbner Bases, and Characteristic Sets , 1996, Automated Deduction in Geometry.
[73] E. Balas,et al. Mixed 0-1 Programming by Lift-and-Project in a Branch-and-Cut Framework , 1996 .
[74] Manolis Koubarakis,et al. Tractable Disjunctions of Linear Constraints , 1996, CP.
[75] Egon Balas,et al. Gomory cuts revisited , 1996, Oper. Res. Lett..
[76] Reinhard Bündgen,et al. Buchberger's Algorithm: The Term Rewriter's Point of View , 1996, Theor. Comput. Sci..
[77] Hubert Comon-Lundh,et al. Diophantine Equations, Presburger Arithmetic and Finite Automata , 1996, CAAP.
[78] Stephen P. Boyd,et al. Semidefinite Programming , 1996, SIAM Rev..
[79] Fabrice Rouillier,et al. Algorithmes efficaces pour l'etude des zeros reels des systemes polynomiaux , 1996 .
[80] Rekha R. Thomas. A Geometric Buchberger Algorithm for Integer Programming , 1995, Math. Oper. Res..
[81] John F. Canny,et al. Efficient Inceremtal Algorithms for the Sparse Resultant and the Mixed Volume , 1995, J. Symb. Comput..
[82] Kim Marriott,et al. Incremental Constraint Deletion in Systems of Linear Constraints , 1995, Inf. Process. Lett..
[83] Joachim Apel,et al. A Gröbner Approach to Involutive Bases , 1995, J. Symb. Comput..
[84] A. Wiles,et al. Ring-Theoretic Properties of Certain Hecke Algebras , 1995 .
[85] A. Wiles. Modular Elliptic Curves and Fermat′s Last Theorem(抜粋) (フェルマ-予想がついに解けた!?) , 1995 .
[86] Habib Abdulrab,et al. General Solution of Systems of Linear Diophantine Equations and Inequations , 1995, RTA.
[87] Deepak Kapur,et al. Comparison of various multivariate resultant formulations , 1995, ISSAC '95.
[88] Dongming Wang,et al. Reasoning about Geometric Problems using an Elimination Method , 1995 .
[89] Roland H. C. Yap,et al. Linear Equation Solving for Constraint Logic Programming , 1995, ICLP.
[90] Alexander Bockmayr,et al. Finite Domain and Cutting Plane Techniques in CLP(PB) , 1995, ICLP.
[91] Joseph Naor,et al. Simple and Fast Algorithms for Linear and Integer Programs With Two Variables per Inequality , 1994, SIAM J. Comput..
[92] Jean-Louis Imbert. Redundancy, Variable Elimination and Linear Disequations , 1994, ILPS.
[93] Deepak Kapur,et al. An Overview of the Tecton Proof System , 1994, Theor. Comput. Sci..
[94] Evelyne Contejean,et al. An Efficient Incremental Algorithm for Solving Systems of Linear Diophantine Equations , 1994, Inf. Comput..
[95] Deepak Kapur,et al. Algebraic and geometric reasoning using Dixon resultants , 1994, ISSAC '94.
[96] Thanases Pheidas,et al. Extensions of Hilbert's tenth problem , 1994, Journal of Symbolic Logic.
[97] Barry Mazur,et al. Questions of decidability and undecidability in Number Theory , 1994, Journal of Symbolic Logic.
[98] Jean-Louis Imbert. Linear Constraint Solving in CLP-Languages , 1994, Constraint Programming.
[99] Alexander Bockmayr,et al. Solving Pseudo-Boolean Constraints , 1994, Constraint Programming.
[100] Hélène Kirchner,et al. On the Use of Constraints in Automated Deduction , 1994, Constraint Programming.
[101] Gilles Pesant,et al. QUAD-CLP(R): Adding the Power of Quadratic Constraints , 1994, PPCP.
[102] Michael J. Maher,et al. Constraint Logic Programming: A Survey , 1994, J. Log. Program..
[103] John N. Hooker,et al. Logic-Based Methods for Optimization , 1994, PPCP.
[104] Sanjeev Arora,et al. The Hardness of Approximate Optimia in Lattices, Codes, and Systems of Linear Equations , 1993, FOCS.
[105] Ana Paula Tomás,et al. Fast Methods for Solving Linear Diophantine Equations , 1993, EPIA.
[106] G. Havas,et al. Recognizing badly presented Z-modules , 1993, math/9406205.
[107] Christian Lengauer,et al. Loop Parallelization in the Polytope Model , 1993, CONCUR.
[108] Dongming Wang,et al. An Elimination Method for Polynomial Systems , 1993, J. Symb. Comput..
[109] David Shallcross,et al. An Implementation of the Generalized Basis Reduction Algorithm for Integer Programming , 1993, INFORMS J. Comput..
[110] Pierre Hansen,et al. State-of-the-Art Survey - Constrained Nonlinear 0-1 Programming , 1993, INFORMS J. Comput..
[111] Egon Balas,et al. A lift-and-project cutting plane algorithm for mixed 0–1 programs , 1993, Math. Program..
[112] Dinesh Manocha,et al. Multipolynomial Resultant Algorithms , 1993, J. Symb. Comput..
[113] Dongming Wang,et al. An Elimination Method Based on Seidenberg’s Theory and Its Applications , 1993 .
[114] Vijay Chandru,et al. Variable Elimination in Linear Constraints , 1993, Comput. J..
[115] Jean-Louis Imbert. Variable Elimination for Disequations in Generalized Linear Constraint Systems , 1993, Comput. J..
[116] Rüdiger Loos,et al. Applying Linear Quantifier Elimination , 1993, Comput. J..
[117] Jean-Louis Imbert. Fourier's Elimination: Which to Choose? , 1993, PPCP.
[118] Claude Kirchner,et al. AC-Unification Race: The System Solving Approach, Implementation and Benchmarks , 1992, J. Symb. Comput..
[119] Volker Weispfenning,et al. Comprehensive Gröbner Bases , 1992, J. Symb. Comput..
[120] Lou van den Dries,et al. Quantifier Elimination for Modules with Scalar Variables , 1992, Ann. Pure Appl. Log..
[121] Roland H. C. Yap,et al. The CLP( R ) language and system , 1992, TOPL.
[122] James Renegar,et al. On the Computational Complexity and Geometry of the First-Order Theory of the Reals, Part III: Quantifier Elimination , 1992, J. Symb. Comput..
[123] James Renegar,et al. On the Computational Complexity and Geometry of the First-Order Theory of the Reals, Part II: The General Decision Problem. Preliminaries for Quantifier Elimination , 1992, J. Symb. Comput..
[124] James Renegar,et al. On the Computational Complexity and Geometry of the First-Order Theory of the Reals, Part I: Introduction. Preliminaries. The Geometry of Semi-Algebraic Sets. The Decision Problem for the Existential Theory of the Reals , 1992, J. Symb. Comput..
[125] Uriel G. Rothblum,et al. Dines—Fourier—Motzkin quantifier elimination and an application of corresponding transfer principles over ordered fields , 1992, Math. Program..
[126] Eric Domenjoud. A technical note on AC-unification. The number of minimal unifiers of the equation a x 1 +c+ a x p = d AC b y 1 +c+ b y q , 1992 .
[127] Daniel Lazard,et al. Solving Zero-Dimensional Algebraic Systems , 1992, J. Symb. Comput..
[128] Jean-Louis Lassez,et al. A Canonical Form for Generalized Linear Constraints , 1992, J. Symb. Comput..
[129] László Lovász,et al. The Generalized Basis Reduction Algorithm , 1990, Math. Oper. Res..
[130] Keith O. Geddes,et al. Algorithms for computer algebra , 1992 .
[131] Alexander Bockmayr. Logic Programming with Pseudo-Boolean Constraints , 1991, WCLP.
[132] Hans-Jürgen Bürckert,et al. A Resolution Principle for a Logic with Restricted Quantifiers , 1991, Lecture Notes in Computer Science.
[133] Peter J. Stuckey. Incremental Linear Constraint Solving and Detection of Implicit Equalities , 1991, INFORMS J. Comput..
[134] Carlo Traverso,et al. Buchberger Algorithm and Integer Programming , 1991, AAECC.
[135] Ana Paula Tomás,et al. Solving Linear Constraints on Finite Domains Through Parsing , 1991, EPIA.
[136] Daniel Lazard,et al. A new method for solving algebraic systems of positive dimension , 1991, Discret. Appl. Math..
[137] Eric Domenjoud,et al. Solving Systems of Linear Diophantine Equations: An Algebraic Approach , 1991, MFCS.
[138] George E. Collins,et al. Partial Cylindrical Algebraic Decomposition for Quantifier Elimination , 1991, J. Symb. Comput..
[139] William Y. Sit. A theory for parametric linear systems , 1991, ISSAC '91.
[140] Loïc Pottier. Minimal Solutions of Linear Diophantine Systems: Bounds and Algorithms , 1991, RTA.
[141] Edith Cohen,et al. Improved algorithms for linear inequalities with two variables per inequality , 1991, STOC '91.
[142] Henri Lombardi,et al. Effective real Nullstellensatz and variants , 1991 .
[143] Victor Y. Pan,et al. Complexity of Algorithms for Linear Systems of Equations , 1991 .
[144] Claude Kirchner,et al. Solving Equations in Abstract Algebras: A Rule-Based Survey of Unification , 1991, Computational Logic - Essays in Honor of Alan Robinson.
[145] Hubert Comon,et al. Disunification: A Survey. , 1991 .
[146] James Lee Hafner,et al. Asymptotically fast triangulation of matrices over rings , 1991, SODA '90.
[147] Volker Weispfenning. Existential equivalence of ordered abelian groups with parameters , 1990, Arch. Math. Log..
[148] Volker Weispfenning. The Complexity of Almost Linear Diophantine Problems , 1990, J. Symb. Comput..
[149] Leo Joskowicz,et al. Reasoning About Linear Constraints Using Parametric Queries , 1990, FSTTCS.
[150] Stephen A. Vavasis,et al. Quadratic Programming is in NP , 1990, Inf. Process. Lett..
[151] Jean-François Romeuf. A Polynomial Algorithm for Solving Systems of Two Linear Diophantine Equations , 1990, Theor. Comput. Sci..
[152] H. Hong. An improvement of the projection operator in cylindrical algebraic decomposition , 1990, ISSAC '90.
[153] András Sebö,et al. Hilbert Bases, Caratheodory's Theorem and Combinatorial Optimization , 1990, IPCO.
[154] Jean-Louis Lassez,et al. Querying constraints , 1990, PODS '90.
[155] Alain Colmerauer,et al. An introduction to Prolog III , 1989, CACM.
[156] Franz Baader,et al. Unification theory , 1986, Decis. Support Syst..
[157] C. Kirchner,et al. Deduction with symbolic constraints , 1990 .
[158] Bert Gerards,et al. On Cutting Planes and Matrices , 1990, Polyhedral Combinatorics.
[159] J. Renegar. Recent Progress on the Complexity of the Decision Problem for the Reals , 1990, Discrete and Computational Geometry.
[160] Pierre Hansen,et al. Constrained Nonlinear 0-1 Programming , 1989 .
[161] Costas S. Iliopoulos,et al. Worst-Case Complexity Bounds on Algorithms for Computing the Canonical Structure of Finite Abelian Groups and the Hermite and Smith Normal Forms of an Integer Matrix , 1989, SIAM J. Comput..
[162] Costas S. Iliopoulos. Worst-Case Complexity Bounds on Algorithms for Computing the Canonical Structure of Infinite Abelian Groups and Solving Systems of Linear Diophantine Equations , 1989, SIAM J. Comput..
[163] Tomás Recio,et al. Sturm-Habicht sequence , 1989, ISSAC '89.
[164] Michael Clausen,et al. Efficient Solution of Linear Diophantine Equations , 1989, J. Symb. Comput..
[165] Jörg H. Siekmann,et al. The Undecidability of the DA-Unification Problem , 1989, J. Symb. Log..
[166] Winfried Neun,et al. Symbolic solution of large stationary chemical kinetics problems , 1989, IMPACT Comput. Sci. Eng..
[167] De Weger,et al. de Weger: On the practical solution of the Thue equation , 1989 .
[168] Joos Heintz,et al. Sur la complexité du principe de Tarski-Seidenberg , 1989 .
[169] Habib Abdulrab,et al. Solving Systems of Linear Diophantine Equations and Word Equations , 1989, RTA.
[170] A. Peressini,et al. The Mathematics Of Nonlinear Programming , 1988 .
[171] Heinz Kredel,et al. Computing Dimension and Independent Sets for Polynomial Ideals , 1988, J. Symb. Comput..
[172] Robert S. Boyer,et al. Integrating decision procedures into heuristic theorem provers: a case study of linear arithmetic , 1988 .
[173] Thomas Käufl,et al. Reasoning about Systems of Linear Inequalities , 1988, CADE.
[174] John N. Hooker,et al. A quantitative approach to logical inference , 1988, Decis. Support Syst..
[175] D. Grigor'ev. Complexity of deciding Tarski algebra , 1988 .
[176] James H. Davenport,et al. Real Quantifier Elimination is Doubly Exponential , 1988, J. Symb. Comput..
[177] Volker Weispfenning,et al. The Complexity of Linear Problems in Fields , 1988, Journal of symbolic computation.
[178] John N. Hooker,et al. Generalized resolution and cutting planes , 1988 .
[179] Pascal Van Hentenryck,et al. The Constraint Logic Programming Language CHIP , 1988, FGCS.
[180] S. Chou. Mechanical Geometry Theorem Proving , 1987 .
[181] William J. Cook,et al. On the complexity of cutting-plane proofs , 1987, Discret. Appl. Math..
[182] Shih Ping Tung,et al. Computational Complexities of Diophantine Equations with Parameters , 1987, J. Algorithms.
[183] Joxan Jaffar,et al. Constraint logic programming , 1987, POPL '87.
[184] Leslie E. Trotter,et al. Hermite Normal Form Computation Using Modulo Determinant Arithmetic , 1987, Math. Oper. Res..
[185] Don Coppersmith,et al. Matrix multiplication via arithmetic progressions , 1987, STOC.
[186] M-F Roy,et al. Géométrie algébrique réelle , 1987 .
[187] András Frank,et al. An application of simultaneous diophantine approximation in combinatorial optimization , 1987, Comb..
[188] H. P. Williams. Fourier's Method of Linear Programming and its Dual , 1986 .
[189] William J. Cook,et al. Sensitivity theorems in integer linear programming , 1986, Math. Program..
[190] Éva Tardos,et al. A Strongly Polynomial Algorithm to Solve Combinatorial Linear Programs , 1986, Oper. Res..
[191] Philippe le Chenadec. Canonical forms in finitely presented algebras , 1984, Research notes in theoretical computer science.
[192] Eduardo D. Sontag,et al. Real Addition and the Polynomial Hierarchy , 1985, Inf. Process. Lett..
[193] George E. Collins,et al. The SAC-2 Computer Algebra System , 1985, European Conference on Computer Algebra.
[194] Eitan M. Gurari. Decidable problems for powerful programs , 1985, JACM.
[195] Armin Haken,et al. The Intractability of Resolution , 1985, Theor. Comput. Sci..
[196] John H. Reif,et al. The complexity of elementary algebra and geometry , 1984, STOC '84.
[197] Narendra Karmarkar,et al. A new polynomial-time algorithm for linear programming , 1984, STOC '84.
[198] Robert E. Shostak,et al. Deciding Combinations of Theories , 1982, JACM.
[199] B. Scarpellini. Complexity of subcases of Presburger arithmetic , 1984 .
[200] Nimrod Megiddo,et al. Linear Programming in Linear Time When the Dimension Is Fixed , 1984, JACM.
[201] Hendrik W. Lenstra,et al. Integer Programming with a Fixed Number of Variables , 1983, Math. Oper. Res..
[202] Hugo Volger. Turing Machines with Linear Alternation, Theories of Bounded Concatenation and the Decision Problem of First Order Theories , 1983, Theor. Comput. Sci..
[203] László Lovász,et al. Factoring polynomials with rational coefficients , 1982 .
[204] Jeffrey C. Lagarias,et al. The computational complexity of simultaneous Diophantine approximation problems , 1982, 23rd Annual Symposium on Foundations of Computer Science (sfcs 1982).
[205] Karl Heinz Borgwardt,et al. Some Distribution-Independent Results About the Asymptotic Order of the Average Number of Pivot Steps of the Simplex Method , 1982, Math. Oper. Res..
[206] Martin Fürer,et al. The Complexity of Presburger Arithmetic with Bounded Quantifier Alternation Depth , 1982, Theor. Comput. Sci..
[207] George E. Collins,et al. Algorithms for the Solution of Systems of Linear Diophantine Equations , 1982, SIAM J. Comput..
[208] F. Grunewald,et al. Mathematical Proceedings of the Cambridge Philosophical Society How to solve a quadratic equation in integers , 2007 .
[209] Warren D. Goldfarb,et al. The Undecidability of the Second-Order Unification Problem , 1981, Theor. Comput. Sci..
[210] Eitan M. Gurari,et al. The Complexity of the Equivalence Problem for two Characterizations of Presburger Sets , 1981, Theor. Comput. Sci..
[211] Leonard Berman,et al. The Complexity of Logical Theories , 1980, Theor. Comput. Sci..
[212] Alexander Schrijver,et al. On Cutting Planes , 1980 .
[213] L. Khachiyan. Polynomial algorithms in linear programming , 1980 .
[214] Hanif D. Sherali,et al. Optimization with disjunctive constraints , 1980 .
[215] David Jefferson,et al. Verification Decidability of Presburger Array Programs , 1980, JACM.
[216] Ravi Kannan,et al. Polynomial Algorithms for Computing the Smith and Hermite Normal Forms of an Integer Matrix , 1979, SIAM J. Comput..
[217] Greg Nelson,et al. Simplification by Cooperating Decision Procedures , 1979, TOPL.
[218] Eitan M. Gurari,et al. An NP-Complete Number-Theoretic Problem , 1979, JACM.
[219] Robert E. Shostak,et al. A Practical Decision Procedure for Arithmetic with Function Symbols , 1979, JACM.
[220] J. Ferrante,et al. The computational complexity of logical theories , 1979 .
[221] Charles E. Blair,et al. A converse for disjunctive constraints , 1978 .
[222] Systems of standard equations in words in an n-layer alphabet of unknowns , 1978 .
[223] Donald W. Loveland,et al. Presburger arithmetic with bounded quantifier alternation , 1978, STOC.
[224] Leonard M. Adleman,et al. NP-Complete Decision Problems for Binary Quadratics , 1978, J. Comput. Syst. Sci..
[225] Gérard P. Huet,et al. An Algorithm to Generate the Basis of Solutions to Homogeneous Linear Diophantine Equations , 1978, Inf. Process. Lett..
[226] L. Lipshitz. The Diophantine problem for addition and divisibility , 1978 .
[227] J. Gathen,et al. A bound on solutions of linear integer equalities and inequalities , 1978 .
[228] Robert E. Shostak,et al. On the SUP-INF Method for Proving Presburger Formulas , 1977, JACM.
[229] Robert G. Bland,et al. New Finite Pivoting Rules for the Simplex Method , 1977, Math. Oper. Res..
[230] Robert G. Jeroslow,et al. Cutting-Plane Theory: Disjunctive Methods , 1977 .
[231] Alan K. Mackworth. Consistency in Networks of Relations , 1977, Artif. Intell..
[232] Joachim von zur Gathen,et al. Weitere zum Erfüllungsproblem polynomial äquivalente kombinatorische Aufgaben , 1976, Komplexität von Entscheidungsproblemen 1976.
[233] W. Bledsoe. A new method for proving certain Presburger formulas , 1975, IJCAI 1975.
[234] Two model theoretic proofs of Rückert’s Nullstellensatz , 1975 .
[235] M. Fischer,et al. SUPER-EXPONENTIAL COMPLEXITY OF PRESBURGER ARITHMETIC , 1974 .
[236] R. Duffin. On fourier’s analysis of linear inequality systems , 1974 .
[237] Richard P. Stanley,et al. Linear homogeneous Diophantine equations and magic labelings of graphs , 1973 .
[238] Derek C. Oppen,et al. Elementary bounds for presburger arithmetic , 1973, STOC.
[239] Vasek Chvátal,et al. Edmonds polytopes and a hierarchy of combinatorial problems , 1973, Discret. Math..
[240] George B. Dantzig,et al. Fourier-Motzkin Elimination and Its Dual , 1973, J. Comb. Theory A.
[241] C. Siegel. Zur Theorie der quadratischen Formen , 1972 .
[242] Gérard Huet,et al. Constrained resolution: a complete method for higher-order logic. , 1972 .
[243] V. Klee,et al. HOW GOOD IS THE SIMPLEX ALGORITHM , 1970 .
[244] V. Strassen. Gaussian elimination is not optimal , 1969 .
[245] E. Bareiss. Sylvester’s identity and multistep integer-preserving Gaussian elimination , 1968 .
[246] A. Baker,et al. Contributions to the theory of diophantine equations I. On the representation of integers by binary forms , 1968, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.
[247] J. Edmonds. Systems of distinct representatives and linear algebra , 1967 .
[248] George B. Dantzig,et al. Linear programming and extensions , 1965 .
[249] H. Putnam,et al. The Decision Problem for Exponential Diophantine Equations , 1961 .
[250] A. Seidenberg. An elimination theory for differential algebra , 1959 .
[251] Ralph E. Gomory,et al. An algorithm for integer solutions to linear programs , 1958 .
[252] A. Seidenberg. Some remarks on Hilbert's Nullstellensatz , 1956 .
[253] A. Tarski. A Decision Method for Elementary Algebra and Geometry , 2023 .
[254] L. Griffiths,et al. A note on linear homogeneous diophantine equations , 1946 .
[255] Th. Motzkin. Beiträge zur Theorie der linearen Ungleichungen , 1936 .
[256] K. Gödel. Über formal unentscheidbare Sätze der Principia Mathematica und verwandter Systeme I , 1931 .
[257] L. L. Dines. Systems of Linear Inequalities , 1919 .
[258] D. Hilbert. Über die Theorie der algebraischen Formen , 1890 .
[259] P. Gordan. Ueber die Auflösung linearer Gleichungen mit reellen Coefficienten , 1873 .
[260] Henry J. Stephen Smith,et al. XV. On systems of linear indeterminate equations and congruences , 1861, Philosophical Transactions of the Royal Society of London.