Synthesis of 45S5 bioactive glass-ceramic using the sol-gel method, catalyzed by low concentration acetic acid extracted from homemade vinegar

[1]  M. Bahrololoom,et al.  Electrophoretic deposition of polyvinyl alcohol/natural chitosan/bioactive glass composite coatings on 316L stainless steel for biomedical application , 2021 .

[2]  Andy H. Choi,et al.  A review: Recent advances in sol‐gel‐derived hydroxyapatite nanocoatings for clinical applications , 2020 .

[3]  Z. Evis,et al.  Historical development of simulated body fluids used in biomedical applications: A review , 2020 .

[4]  J. Eckert,et al.  Synthesis and characterization of novel mesoporous strontium-modified bioactive glass nanospheres for bone tissue engineering applications , 2020 .

[5]  E. Fiume,et al.  Comparison between Bioactive Sol-Gel and Melt-Derived Glasses/Glass-Ceramics Based on the Multicomponent SiO2–P2O5–CaO–MgO–Na2O–K2O System , 2020, Materials.

[6]  W. Ni,et al.  Influence of boron substitution on the crystallisation behaviour of tetracalcium phosphate phase in the 4.5SiO2-3Al2O3-1.5P2O5-5CaO glass system , 2019 .

[7]  Nilgün Özdemir,et al.  Sour cherry (Prunus cerasus L.) vinegars produced from fresh fruit or juice concentrate: Bioactive compounds, volatile aroma compounds and antioxidant capacities. , 2019, Food chemistry.

[8]  A. Seeds,et al.  Integration of III-V lasers on Si for Si photonics , 2019, Progress in Quantum Electronics.

[9]  A. Boccaccini,et al.  Protein interactions with bioactive glass surfaces: A review , 2019, Applied Materials Today.

[10]  E. Fiume,et al.  Bioactive sol-gel glasses: Processing, properties, and applications , 2018 .

[11]  M. Sitarz,et al.  Structural and microstructural comparison of bioactive melt-derived and gel-derived glasses from CaO-SiO2 binary system , 2018, Ceramics International.

[12]  M. Mozafari,et al.  Bioactive Glasses: Sprouting Angiogenesis in Tissue Engineering. , 2018, Trends in biotechnology.

[13]  A. Zamanian,et al.  Synthesis, Characterization and In Vitro Biological Evaluation of Sol-gel Derived Sr-containing Nano Bioactive Glass , 2017, Silicon.

[14]  S. Nagaraja,et al.  Effect of Desensitization Using Bioactive Glass, Hydroxyapatite, and Diode Laser on the Shear Bond Strength of Resin Composites Measured at Different Time Intervals: An In vitro Study , 2017, Contemporary clinical dentistry.

[15]  Kai Zheng,et al.  Sol-gel processing of bioactive glass nanoparticles: A review. , 2017, Advances in colloid and interface science.

[16]  R. Osman,et al.  Corrosion behavior of Mg-3Zn/bioglass (45S5) composite in simulated body fluid (SBF) and phosphate buffered saline (PBS) solution , 2016 .

[17]  H. M. Khan,et al.  Nano-hydroxyapatite/chitosan-starch nanocomposite as a novel bone construct: Synthesis and in vitro studies. , 2015, International journal of biological macromolecules.

[18]  D. Brauer,et al.  Influence of dissolution medium pH on ion release and apatite formation of Bioglass® 45S5 , 2015 .

[19]  R. Drevet,et al.  A new sol-gel synthesis of 45S5 bioactive glass using an organic acid as catalyst. , 2015, Materials science & engineering. C, Materials for biological applications.

[20]  G. Wang,et al.  Biodegradable borosilicate bioactive glass scaffolds with a trabecular microstructure for bone repair. , 2014, Materials science & engineering. C, Materials for biological applications.

[21]  G. Ozin,et al.  Controlling morphology and porosity to improve performance of molecularly imprinted sol-gel silica. , 2014, Chemical Society reviews.

[22]  G. Hilmas,et al.  Mechanical properties of bioactive glass (13-93) scaffolds fabricated by robotic deposition for structural bone repair. , 2013, Acta biomaterialia.

[23]  J. Nychka,et al.  Sol–Gel Synthesis of Bioactive Glass‐Ceramic 45S5 and its in vitro Dissolution and Mineralization Behavior , 2013 .

[24]  M. Hupa,et al.  Dissolution patterns of biocompatible glasses in 2-amino-2-hydroxymethyl-propane-1,3-diol (Tris) buffer. , 2013, Acta biomaterialia.

[25]  Jiang Chang,et al.  Mesoporous bioactive glasses: structure characteristics, drug/growth factor delivery and bone regeneration application , 2012, Interface Focus.

[26]  M. Lombardi,et al.  Sol–gel derived 45S5 bioglass: synthesis, microstructural evolution and thermal behaviour , 2012, Journal of Materials Science: Materials in Medicine.

[27]  Anubha A. Gupta,et al.  In situ amino acid functionalization and microstructure formation of hydroxyapatite nanoparticles synthesized at different pH by precipitation route , 2012 .

[28]  A. Harabi,et al.  Sol-gel synthesis of a new composition of bioactive glass in the quaternary system SiO2-CaO-Na2O-P2O5 , 2011 .

[29]  Edgar Dutra Zanotto,et al.  Gel-derived SiO2–CaO–Na2O–P2O5 bioactive powders: Synthesis and in vitro bioactivity , 2011 .

[30]  Reinhard Conradt,et al.  Sintering and crystallisation of 45S5 Bioglass® powder , 2009 .

[31]  Zhongping Yao,et al.  Adjustment of the ratio of Ca/P in the ceramic coating on Mg alloy by plasma electrolytic oxidation , 2009 .

[32]  Larry L. Hench,et al.  Genetic design of bioactive glass , 2009 .

[33]  Julian R. Jones,et al.  Nanostructure evolution and calcium distribution in sol-gel derived bioactive glass , 2009 .

[34]  J. Chevalier,et al.  Sintering behaviour of 45S5 bioactive glass. , 2008, Acta biomaterialia.

[35]  A. Georgoulis,et al.  Synthesis and characterization of sol–gel derived bioactive CaO–SiO2–P2O5 glasses containing magnetic nanoparticles , 2008 .

[36]  R. Zenati,et al.  Structural transformations of bioactive glass 45S5 with thermal treatments , 2007 .

[37]  Tadashi Kokubo,et al.  How useful is SBF in predicting in vivo bone bioactivity? , 2006, Biomaterials.

[38]  Aldo R Boccaccini,et al.  45S5 Bioglass-derived glass-ceramic scaffolds for bone tissue engineering. , 2006, Biomaterials.

[39]  D. Avnir,et al.  Recent bio-applications of sol–gel materials , 2006 .

[40]  Larry L. Hench,et al.  Bioactive materials for tissue engineering, regeneration and repair , 2003 .

[41]  M. Azooz,et al.  Characterization of some bioglass–ceramics , 2003 .

[42]  M. Sitarz,et al.  Structural studies of the NaCaPO4–SiO2 sol–gel derived materials , 2003 .

[43]  L. Hench,et al.  Sol–Gel Technology , 2000 .

[44]  Joel Morris,et al.  Substituent effects on the antibacterial activity of nitrogen-carbon-linked (azolylphenyl)oxazolidinones with expanded activity against the fastidious gram-negative organisms Haemophilus influenzae and Moraxella catarrhalis. , 2000, Journal of medicinal chemistry.

[45]  H. Tai,et al.  Influence of hydroxyapatite particle size on bone cell activities: an in vitro study. , 1998, Journal of biomedical materials research.

[46]  L. Hench Sol-gel materials for bioceramic applications , 1997 .

[47]  E. Lora-Tamayo,et al.  Bioceramics—simulated body fluid interfaces: pH and its influence of hydroxyapatite formation , 1996 .

[48]  L L Hench,et al.  An investigation of bioactive glass powders by sol-gel processing. , 1991, Journal of applied biomaterials : an official journal of the Society for Biomaterials.

[49]  Larry L. Hench,et al.  The sol-gel process , 1990 .

[50]  S. Maity Use of nanostructured materials in soft tissue engineering , 2018 .

[51]  K. Shanmugam,et al.  Bioceramics—An introductory overview , 2018 .

[52]  Julian R Jones,et al.  Review of bioactive glass: from Hench to hybrids. , 2013, Acta biomaterialia.

[53]  L. Hench,et al.  Characterization of melt-derived 45S5 and sol-gel-derived 58S bioactive glasses. , 2001, Journal of biomedical materials research.

[54]  L. Hench,et al.  Dose-dependent behavior of bioactive glass dissolution. , 2001, Journal of biomedical materials research.

[55]  C. E. Mortimer Introduction to chemistry , 1977 .

[56]  A. Ravaglioli,et al.  Bioceramics , 2022, An Introduction to Biomaterials Science and Engineering.