Hybrid Sparse Array Beamforming Design for General Rank Signal Models

The paper considers sparse array design for receive beamforming achieving maximum signal-to-interference plus noise ratio (MaxSINR) for both single point source and multiple point sources, operating in an interference active environment. Unlike existing sparse design methods which either deal with structured environment-independent or non-structured environment-dependent arrays, our method is a hybrid approach and seeks a full augumentable array that optimizes beamformer performance. This approach proves important for limited aperture that constrains the number of possible uniform grid points for sensor placements. The problem is formulated as quadratically constraint quadratic program (QCQP), with the cost function penalized with weighted $l_1$-norm squared of the beamformer weight vector. Simulation results are presented to show the effectiveness of the proposed algorithms for array configurability in the case of both single and general rank signal correlation matrices. Performance comparisons among the proposed sparse array, the commonly used uniform arrays, arrays obtained by other design methods, and arrays designed without the augmentability constraint are provided.

[1]  Syed A. Hamza,et al.  Hybrid Sparse Array Design for Under-determined Models , 2019, ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[2]  Randy L. Haupt,et al.  Thinned arrays using genetic algorithms , 1993, Proceedings of IEEE Antennas and Propagation Society International Symposium.

[3]  Moeness G. Amin,et al.  Multi-Frequency Co-Prime Arrays for High-Resolution Direction-of-Arrival Estimation , 2015, IEEE Transactions on Signal Processing.

[4]  Marc Moonen,et al.  Efficient sensor subset selection and link failure response for linear MMSE signal estimation in wireless sensor networks , 2010, 2010 18th European Signal Processing Conference.

[5]  Syed A. Hamza,et al.  Optimum sparse array beamforming for general rank signal models , 2018, 2018 IEEE Radar Conference (RadarConf18).

[6]  B. Fuchs Application of Convex Relaxation to Array Synthesis Problems , 2014, IEEE Transactions on Antennas and Propagation.

[7]  Michael Elad,et al.  From Sparse Solutions of Systems of Equations to Sparse Modeling of Signals and Images , 2009, SIAM Rev..

[8]  Ying He,et al.  Sensor scheduling for target tracking in sensor networks , 2004, 2004 43rd IEEE Conference on Decision and Control (CDC) (IEEE Cat. No.04CH37601).

[9]  Diego Caratelli,et al.  Analytical synthesis technique for linear uniform‐amplitude sparse arrays , 2011 .

[10]  Maryam Fazel,et al.  Iterative reweighted algorithms for matrix rank minimization , 2012, J. Mach. Learn. Res..

[11]  Harry L. Van Trees,et al.  Detection, Estimation, and Modulation Theory: Radar-Sonar Signal Processing and Gaussian Signals in Noise , 1992 .

[12]  Abbas Jamalipour,et al.  Wireless communications , 2005, GLOBECOM '05. IEEE Global Telecommunications Conference, 2005..

[13]  B. Hofmann-Wellenhof,et al.  Introduction to spectral analysis , 1986 .

[14]  Visa Koivunen,et al.  Symmetric Sparse Linear Array for Active Imaging , 2018, 2018 IEEE 10th Sensor Array and Multichannel Signal Processing Workshop (SAM).

[15]  Nikos D. Sidiropoulos,et al.  Transmit beamforming for physical-layer multicasting , 2006, IEEE Transactions on Signal Processing.

[16]  T. Minimum-Redundancy Linear Arrays , 2022 .

[17]  Wei Liu,et al.  Sparse Array Design for Wideband Beamforming With Reduced Complexity in Tapped Delay-Lines , 2014, IEEE/ACM Transactions on Audio, Speech, and Language Processing.

[18]  M. D'Urso,et al.  Maximally Sparse Arrays Via Sequential Convex Optimizations , 2012, IEEE Antennas and Wireless Propagation Letters.

[19]  D. Donoho For most large underdetermined systems of linear equations the minimal 𝓁1‐norm solution is also the sparsest solution , 2006 .

[20]  Sundeep Prabhakar Chepuri,et al.  Sparsity-enforcing sensor selection for DOA estimation , 2013, 2013 5th IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP).

[21]  Sundeep Prabhakar Chepuri,et al.  Sparsity-Promoting Sensor Selection for Non-Linear Measurement Models , 2013, IEEE Transactions on Signal Processing.

[22]  H. Unz,et al.  Linear Arrays with arbitrarily distributed elements , 1960 .

[23]  P. P. Vaidyanathan,et al.  Nested Arrays in Two Dimensions, Part I: Geometrical Considerations , 2012, IEEE Transactions on Signal Processing.

[24]  Theodore S. Rappaport,et al.  Overview of spatial channel models for antenna array communication systems , 1998, IEEE Wirel. Commun..

[25]  Elias Aboutanios,et al.  Reconfigurable Adaptive Array Beamforming by Antenna Selection , 2014, IEEE Transactions on Signal Processing.

[26]  Roger F. Harrington,et al.  Sidelobe reduction by nonuniform element spacing , 1961 .

[27]  R. Leahy,et al.  On the design of maximally sparse beamforming arrays , 1991 .

[28]  Y. T. Lo,et al.  A study of space-tapered arrays , 1966 .

[29]  Jian Li,et al.  On robust Capon beamforming and diagonal loading , 2003, IEEE Trans. Signal Process..

[30]  Zhi-Quan Luo,et al.  Robust adaptive beamforming for general-rank signal models , 2003, IEEE Trans. Signal Process..

[31]  A. Maffett,et al.  Array factors with nonuniform spacing parameter , 1962 .

[32]  Xianbin Cao,et al.  Analysis and Design of Optimum Sparse Array Configurations for Adaptive Beamforming , 2018, IEEE Transactions on Signal Processing.

[33]  Zhi-Quan Luo,et al.  Semidefinite Relaxation of Quadratic Optimization Problems , 2010, IEEE Signal Processing Magazine.

[34]  Yimin Zhang,et al.  Generalized Coprime Array Configurations for Direction-of-Arrival Estimation , 2015, IEEE Transactions on Signal Processing.

[35]  V. Murino,et al.  Stochastic optimization of linear sparse arrays , 1999 .

[36]  Pablo A. Parrilo,et al.  Guaranteed Minimum-Rank Solutions of Linear Matrix Equations via Nuclear Norm Minimization , 2007, SIAM Rev..

[37]  Stephen P. Boyd,et al.  Enhancing Sparsity by Reweighted ℓ1 Minimization , 2007, 0711.1612.

[38]  Alexei Gorokhov,et al.  Positive-definite Toeplitz completion in DOA estimation for nonuniform linear antenna arrays. II. Partially augmentable arrays , 1998, IEEE Transactions on Signal Processing.

[39]  G.R. Lockwood,et al.  Real-time 3-D ultrasound imaging using sparse synthetic aperture beamforming , 1998, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[40]  Stephen P. Boyd,et al.  Sensor Selection via Convex Optimization , 2009, IEEE Transactions on Signal Processing.

[41]  Bjorn Ottersten,et al.  Optimal Downlink Beamforming Using Semidefinite Optimization , 2014 .

[42]  Douglas A. Gray,et al.  Positive-definite Toeplitz completion in DOA estimation for nonuniform linear antenna arrays. II. Partially augmentable arrays , 1998, IEEE Trans. Signal Process..

[43]  Z. Yu,et al.  Beampattern Synthesis for Linear and Planar Arrays With Antenna Selection by Convex Optimization , 2010, IEEE Transactions on Antennas and Propagation.

[44]  W.A. van Cappellen,et al.  Sparse antenna array configurations in large aperture synthesis radio telescopes , 2006, 2006 European Radar Conference.

[45]  Jian Li,et al.  Sparse Antenna Array Design for MIMO Active Sensing Applications , 2011, IEEE Transactions on Antennas and Propagation.

[46]  Moeness G. Amin,et al.  Design of optimum sparse array for robust MVDR beamforming against DOA mismatch , 2017, 2017 IEEE 7th International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP).

[47]  Keh-Chiarng Huarng,et al.  Adaptive beamforming with conjugate symmetric weights , 1991 .

[48]  Sanjit K. Mitra,et al.  On properties and design of nonuniformly spaced linear arrays [antennas] , 1988, IEEE Trans. Acoust. Speech Signal Process..

[49]  Ingrid Moerman,et al.  Energy aware greedy subset selection for speech enhancement in wireless acoustic sensor networks , 2012, 2012 Proceedings of the 20th European Signal Processing Conference (EUSIPCO).

[50]  Allen Y. Yang,et al.  Fast ℓ1-minimization algorithms and an application in robust face recognition: A review , 2010, 2010 IEEE International Conference on Image Processing.

[51]  Sundeep Prabhakar Chepuri,et al.  Microphone Subset Selection for MVDR Beamformer Based Noise Reduction , 2017, IEEE/ACM Transactions on Audio, Speech, and Language Processing.

[52]  Nikos D. Sidiropoulos,et al.  Joint Multicast Beamforming and Antenna Selection , 2013, IEEE Transactions on Signal Processing.

[53]  H. Vincent Poor,et al.  Sensor Selection in Distributed Multiple-Radar Architectures for Localization: A Knapsack Problem Formulation , 2012, IEEE Transactions on Signal Processing.

[54]  P. P. Vaidyanathan,et al.  Nested Arrays: A Novel Approach to Array Processing With Enhanced Degrees of Freedom , 2010, IEEE Transactions on Signal Processing.

[55]  M. Amin,et al.  Sparse Array Quiescent Beamformer Design Combining Adaptive and Deterministic Constraints , 2017, IEEE Transactions on Antennas and Propagation.