Order and metric geometry compatible stochastic processing

A traditional random variable X is a function that maps from a stochastic process to the real line. Here, “real line” refers to the structure (R, |⋅|, ≤) , where R is the set of real numbers, ≤ is the standard linear order relation on R , and d (x, y) ≜ |x − y| is the usual metric on R . The traditional expectation value E(X) of X is thenoften apoor choice of a statisticwhen the stochastic process that X maps from is a structure other than the real line or some substructure of the real line. If the stochastic process is a structure that is not linearly ordered (including structures totally unordered) and/or has a metric space geometry very different from that induced by the usual metric, then statistics such as E(X) are often of poor qualitywith regards to qualitative intuition and quantitative variance (expected error) measurements. For example, the traditional expected value of a fair die is E(X) = 1 6 (1 + 2 +⋯+ 6) = 3.5. But this result has no relationship with reality or with intuition because the result implies that we expect the value of ⚂ or ⚃ more than we expect the outcome of say ⚀ or ⚁. The fact is, that for a fair die, we would expect any pair of values equally. The reason for this is that the values of the face of a fair die are merely symbols with no order, and with no metric geometry other than the discrete metric geometry. On a fair die, ⚁ is not greater or less than ⚀ ; rather ⚁ and ⚀ are simply symbols without order. Moreover, ⚀ is not “closer” to ⚁ than it is to ⚂ ; rather, ⚀ , ⚁ , and ⚂ are simply symbols without any inherit order or metric geometry. This paper proposes an alternative statistical system, based somewhat on graph theory, that takes into account the order structure and metric geometry of the underlying stochastic process. 2010Mathematics SubjectClassification 60B99,60G05 (primary); 60E15,60G20,62C20,62F03,62P10,92D20 (secondary)

[1]  Frank Harary,et al.  Graph Theory , 2016 .

[2]  Oystein Ore,et al.  On the Foundation of Abstract Algebra. II , 1935 .

[3]  Stanley Burris,et al.  A course in universal algebra , 1981, Graduate texts in mathematics.

[4]  F. Crick,et al.  Genetical Implications of the Structure of Deoxyribonucleic Acid , 1953, Nature.

[5]  N. Bastien,et al.  Analysis of multimerization of the SARS coronavirus nucleocapsid protein , 2004, Biochemical and Biophysical Research Communications.

[6]  Frank L. Severance System Modeling and Simulation: An Introduction , 2001 .

[7]  Krzysztof Wesolowski Introduction to Digital Communication Systems , 2009 .

[8]  Athanasios Papoulis,et al.  Probability, Random Variables and Stochastic Processes , 1965 .

[9]  M. Fréchet Sur quelques points du calcul fonctionnel , 1906 .

[10]  A. N. Kolmogorov,et al.  Foundations of the theory of probability , 1960 .

[11]  Anthony N. Michel,et al.  Applied Algebra and Functional Analysis , 2011 .

[12]  M. Fréchet Les espaces abstraits et leur théorie considérée comme : introduction a l'analyse générale , 1929 .

[13]  H. Mulholland On Generalizations of Minkowski's Inequality in the Form of a Triangle Inequality , 1949 .

[14]  G. Birkhoff,et al.  On the combination of subalgebras , 1933, Mathematical Proceedings of the Cambridge Philosophical Society.

[15]  P. Halmos Naive Set Theory , 1961 .

[16]  Proceedings of the London Mathematical Society , 1877, Nature.

[17]  Stefan Friedrich,et al.  Topology , 2019, Arch. Formal Proofs.

[18]  P. Bullen Handbook of means and their inequalities , 1987 .

[19]  J. Giles Introduction to the Analysis of Metric Spaces , 1987 .

[20]  Lech Maligranda A simple proof of the Hölder and the Minkowski inequality , 1995 .

[21]  G. Rota,et al.  The Many Lives of Lattice Theory , 1998 .

[22]  C. Kubrusly Elements of Operator Theory , 2001 .

[23]  Donato Michele Cifarelli,et al.  De Finetti''''s contributions to probability and statistics , 1996 .

[24]  Elena Deza,et al.  Encyclopedia of Distances , 2014 .

[25]  A. Friedman Foundations of modern analysis , 1970 .

[26]  R. Stoltenberg On quasi-metric spaces , 1969 .

[27]  Les espaces abstraits et leur theorie considérée comme introduction a I'analyse générale , 1929 .

[28]  L. Comtet,et al.  Advanced Combinatorics: The Art of Finite and Infinite Expansions , 1974 .

[29]  K. Viswanath An introduction to measure and integration , 1998 .

[30]  J. C. Burkill The Lebesgue Integral , 1951 .

[31]  F. Stephan,et al.  Set theory , 2018, Mathematical Statistics with Applications in R.

[32]  R. Dedekind,et al.  Was sind und was sollen die Zahlen , 1961 .

[33]  T. E. Hull,et al.  Random Number Generators , 1962 .

[34]  R. Vallin Continuity and Differentiability Aspects of Metric Preserving Functions , 1999 .

[35]  T. Apostol Mathematical Analysis , 1957 .

[36]  F. Crick,et al.  Molecular Structure of Nucleic Acids: A Structure for Deoxyribose Nucleic Acid , 1953, Nature.

[37]  Paul Corazza,et al.  INTRODUCTION TO METRIC-PRESERVING FUNCTIONS , 1999 .

[38]  P. Billingsley,et al.  Probability and Measure , 1980 .

[39]  P. Fuhrmann A Polynomial Approach to Linear Algebra , 1996 .

[40]  R. Franzosa,et al.  Introduction to Topology: Pure and Applied , 2007 .

[41]  E. Pap Null-Additive Set Functions , 1995 .

[42]  G. Rota The Number of Partitions of a Set , 1964 .

[43]  H. Minkowski,et al.  Geometrie der Zahlen , 1896 .

[44]  Nikolai K. Vereshchagin,et al.  Basic set theory , 2002, Student mathematical library.

[45]  Jaakko Astola,et al.  Algebra of Logic , 2011 .

[46]  Ladislav Beran,et al.  Orthomodular Lattices: Algebraic Approach , 1985 .

[47]  J. K. Hunter,et al.  Measure Theory , 2007 .

[48]  Professor Sergiu Rudeanu Lattice Functions and Equations , 2001, Discrete Mathematics and Theoretical Computer Science.

[49]  Abraham Kandel,et al.  The Number System , 2011 .

[50]  M. J. Saegrove On bitopological spaces , 1971 .

[51]  Aarnout Brombacher,et al.  Probability... , 2009, Qual. Reliab. Eng. Int..

[52]  F. Crick,et al.  Molecular structure of nucleic acids: a structure for deoxyribose nucleic acid. , 1993, The American journal of psychiatry.

[53]  W. A. Kirk,et al.  An Introduction to Metric Spaces and Fixed Point Theory , 2001 .

[54]  Elena Deza,et al.  Dictionary of distances , 2006 .

[55]  R. Löwen,et al.  The Classical Fields: The p -adic numbers , 2007 .

[56]  Radko Mesiar Review: "On Nonsymmetric Topological and Probabilistic Structures" by M. Grabiec, Y. Je Cho and V. Radu , 2009, Kybernetika.

[57]  R. Cori,et al.  Recursion theory, Gödel's theorems, set theory, model theory , 2001 .

[58]  Jeffrey C. Pommerville,et al.  Fundamentals of microbiology , 2016 .

[59]  渡辺 公夫,et al.  Was sind und was sollen die Zahlen , 1989 .

[60]  P. Steerenberg,et al.  Targeting pathophysiological rhythms: prednisone chronotherapy shows sustained efficacy in rheumatoid arthritis. , 2010, Annals of the rheumatic diseases.

[61]  Gerhard Goos,et al.  Modular Compiler Verification: A Refinement-Algebraic Approach Advocating Stepwise Abstraction , 1997 .

[62]  R. Dedekind,et al.  Ueber die von drei Moduln erzeugte Dualgruppe , 1900 .

[63]  Klotilda Lazaj Metric Preserving Functions , 2009 .

[64]  E. Landau,et al.  Foundations of analysis : the arithmetic of whole, rational, irrational, and complex numbers , 1966 .

[65]  Brian A. Davey,et al.  An Introduction to Lattices and Order , 1989 .

[66]  lawa Kanas,et al.  Metric Spaces , 2020, An Introduction to Functional Analysis.

[67]  Umberto Bottazzini,et al.  The Higher Calculus: A History of Real and Complex Analysis from Euler to Weierstrass , 1986 .

[68]  On Nonsymmetric Topological and Probabilistic Structures , 2009 .

[69]  L. Duysens Preprints , 1966, Nature.

[70]  Elmer Tolsted,et al.  An Elementary Derivation of the Cauchy, Hölder, and Minkowski Inequalities from Young's Inequality , 1964 .

[71]  Garrett Birkhoff,et al.  Lattices and their applications , 1938 .

[72]  Gudrun Kalmbach Measures and Hilbert Lattices , 1986 .

[73]  K. D. Joshi Introduction to General Topology , 1983 .

[74]  Helly Grundbegriffe der Wahrscheinlichkeitsrechnung , 1936 .

[75]  Hugo Ribeiro,et al.  Sur les espaces à métrique faible , 1943 .

[76]  Donald M. Topkis,et al.  Minimizing a Submodular Function on a Lattice , 1978, Oper. Res..

[77]  M. Cowles Statistical Computing , 2004 .

[78]  I. Dunham,et al.  The DNA sequence and biological annotation of human chromosome 1 , 2006, Nature.

[79]  Fumitomo Maeda,et al.  Theory of symmetric lattices , 1970 .

[80]  Patrick Suppes,et al.  Axiomatic set theory , 1969 .

[81]  Gregory K. Miller Probability: Modeling and Applications to Random Processes , 2006 .

[82]  Fred B. Schneider,et al.  A Logical Approach to Discrete Math , 1993, Texts and Monographs in Computer Science.