Using the hybrid gain algorithm to sample data assimilation uncertainty

At the Canadian Meteorological Centre (CMC), an ensemble variational (EnVar) data assimilation system is used for the global deterministic prediction system and an ensemble Kalman filter (EnKF) is used for the global ensemble prediction system. These two systems are co‐developed and co‐evolving at the CMC and in this study we explore how to maximize the impact of having two algorithms.

[1]  Stephen G Penny,et al.  Mathematical foundations of hybrid data assimilation from a synchronization perspective. , 2017, Chaos.

[2]  Mark Buehner,et al.  An Ensemble Kalman Filter for Numerical Weather Prediction Based on Variational Data Assimilation: VarEnKF , 2017 .

[3]  Massimo Bonavita,et al.  EnKF and Hybrid Gain Ensemble Data Assimilation. Part II: EnKF and Hybrid Gain Results , 2015 .

[4]  Massimo Bonavita,et al.  EnKF and Hybrid Gain Ensemble Data Assimilation. Part I: EnKF Implementation , 2015 .

[5]  Massimo Bonavita,et al.  On the impact of re‐centring initial conditions for ensemble forecasts , 2015 .

[6]  Mark Buehner,et al.  Implementation of Deterministic Weather Forecasting Systems Based on Ensemble–Variational Data Assimilation at Environment Canada. Part I: The Global System , 2015 .

[7]  Lars Nerger,et al.  On Serial Observation Processing in Localized Ensemble Kalman Filters , 2015 .

[8]  E. Kalnay,et al.  A Hybrid Global Ocean Data Assimilation System at NCEP , 2014 .

[9]  Toshiyuki Imamura,et al.  The 10,240‐member ensemble Kalman filtering with an intermediate AGCM , 2014 .

[10]  Stephen G. Penny,et al.  The Hybrid Local Ensemble Transform Kalman Filter , 2014 .

[11]  Seung-Jong Baek,et al.  Higher Resolution in an Operational Ensemble Kalman Filter , 2014 .

[12]  Bin He,et al.  Parallel Implementation of an Ensemble Kalman Filter , 2014 .

[13]  David D. Parrish,et al.  GSI 3DVar-Based Ensemble-Variational Hybrid Data Assimilation for NCEP Global Forecast System: Single-Resolution Experiments , 2013 .

[14]  Vivian Lee,et al.  The Canadian Global Environmental Multiscale model on the Yin‐Yang grid system , 2011 .

[15]  M. Buehner,et al.  Intercomparison of Variational Data Assimilation and the Ensemble Kalman Filter for Global Deterministic NWP. Part I: Description and Single-Observation Experiments , 2010 .

[16]  M. Buehner,et al.  Intercomparison of Variational Data Assimilation and the Ensemble Kalman Filter for Global Deterministic NWP. Part II: One-Month Experiments with Real Observations , 2010 .

[17]  P. L. Houtekamer,et al.  Ensemble Kalman Filter Configurations and Their Performance with the Logistic Map , 2009 .

[18]  X. Deng,et al.  Model Error Representation in an Operational Ensemble Kalman Filter , 2009 .

[19]  Guillem Candille,et al.  The Multiensemble Approach: The NAEFS Example , 2009 .

[20]  P. L. Houtekamer,et al.  Verification of an Ensemble Prediction System against Observations , 2007 .

[21]  Monique Tanguay,et al.  Extension of 3DVAR to 4DVAR: Implementation of 4DVAR at the Meteorological Service of Canada , 2007 .

[22]  W. Briggs Statistical Methods in the Atmospheric Sciences , 2007 .

[23]  Alberto Carrassi,et al.  Adaptive observations and assimilation in the unstable subspace by breeding on the data-assimilation system , 2007 .

[24]  Istvan Szunyogh,et al.  Efficient data assimilation for spatiotemporal chaos: A local ensemble transform Kalman filter , 2005, physics/0511236.

[25]  P. L. Houtekamer,et al.  Ensemble Kalman filtering , 2005 .

[26]  Matthew Fisher,et al.  On the equivalence between Kalman smoothing and weak‐constraint four‐dimensional variational data assimilation , 2005, Quarterly Journal of the Royal Meteorological Society.

[27]  Paul Poli,et al.  Diagnosis of observation, background and analysis‐error statistics in observation space , 2005 .

[28]  D. P. DEE,et al.  Bias and data assimilation , 2005 .

[29]  M. Buehner,et al.  Atmospheric Data Assimilation with an Ensemble Kalman Filter: Results with Real Observations , 2005 .

[30]  J. Hansen,et al.  Implications of Stochastic and Deterministic Filters as Ensemble-Based Data Assimilation Methods in Varying Regimes of Error Growth , 2004 .

[31]  H. Hersbach Decomposition of the Continuous Ranked Probability Score for Ensemble Prediction Systems , 2000 .

[32]  T. Hamill,et al.  A Hybrid Ensemble Kalman Filter-3D Variational Analysis Scheme , 2000 .

[33]  Luc Fillion,et al.  Four-Dimensional Variational Data Assimilation with Digital Filter Initialization , 2000 .

[34]  P. Houtekamer,et al.  An Adaptive Ensemble Kalman Filter , 2000 .

[35]  Harold E. Brooks,et al.  Using Ensembles for Short-Range Forecasting , 1999 .

[36]  P. Courtier,et al.  The ECMWF implementation of three‐dimensional variational assimilation (3D‐Var). I: Formulation , 1998 .

[37]  P. L. Houtekamer,et al.  A System Simulation Approach to Ensemble Prediction , 1996 .

[38]  Luc Fillion,et al.  The impact of a digital filter finalization technique in a global data assimilation system , 1995 .

[39]  John Derber,et al.  The National Meteorological Center's spectral-statistical interpolation analysis system , 1992 .

[40]  R. Daley Atmospheric Data Analysis , 1991 .

[41]  E. S. Pearson,et al.  Tests for departure from normality. Empirical results for the distributions of b2 and √b1 , 1973 .

[42]  R. D'Agostino An omnibus test of normality for moderate and large size samples , 1971 .

[43]  R. E. Kalman,et al.  New Results in Linear Filtering and Prediction Theory , 1961 .

[44]  R. Bannister A review of operational methods of variational and ensemble‐variational data assimilation , 2017 .

[45]  P. Houtekamer,et al.  REVIEW Review of the Ensemble Kalman Filter for Atmospheric Data Assimilation , 2016 .

[46]  Massimo Bonavita,et al.  EnKF and Hybrid Gain Ensemble Data Assimilation , 2014 .

[47]  N. Bormann,et al.  Spread of the ensemble of data assimilations in radiance space , 2013 .

[48]  M. Fisher,et al.  Background Error Covariance Modelling , 2003 .

[49]  R. Clark,et al.  Multi‐model multi‐analysis ensembles in quasi‐operational medium‐range forecasting , 2002 .

[50]  R. E. Kalman,et al.  A New Approach to Linear Filtering and Prediction Problems , 2002 .

[51]  P. Houtekamer,et al.  A Sequential Ensemble Kalman Filter for Atmospheric Data Assimilation , 2001 .

[52]  Eric Jones,et al.  SciPy: Open Source Scientific Tools for Python , 2001 .

[53]  Ralph B. D'Agostino,et al.  Tests for Departure from Normality , 1973 .

[54]  Y. Rochon,et al.  NOTES AND CORRESPONDENCE On the Relationship between Incremental Analysis Updating and Incremental Digital Filtering , 2022 .