Multiphonon Infrared Absorption in the Highly Transparent Frequency Regime of Solids

Publisher Summary The chapter presents a review on the considerable activity directed toward the multiphonon infrared absorption (MIRA) problem and discusses the progress in the field. The chapter presents a brief discussion on some of the physics surrounding MIRA, as well as some of the general theoretical considerations. The chapter presents a detailed description of various approaches and the models employed by various investigators, an overview of the results which have been obtained. The application of sum rules to MIRA is described. The experimental picture, regarding both methods and results are addressed. Comparisons of experimental results with theoretical predictions are indicated. The principal conclusions emerging from investigations of MIRA are summarized, and a discussion of the status of the field is presented. Multiphonon absorption of light in solids results both directly from nonlinearities in the electric moment, as well as indirectly from anharmonic interaction of the phonons excited by the light. Conventionally, the term "anharmonicity absorption" (AA) refers to the MIRA in IR-active solids resulting from the excitation and subsequent decay of the IR-active phonon(s). This interaction is mediated by the electric dipole moment, that is, terms in the moment that are linear in lattice displacements.

[1]  B. Szigeti The infra-red spectra of crystals , 1960, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[2]  F. Lüty,et al.  Der Einfluß von OH−-Ionen auf Absorptionsspektrum und Ionenleitfähigkeit von KCl-Einkristallen , 1963 .

[3]  G. Birnbaum,et al.  Interferometric Null Method for Measuring Stress-induced Birefringence. , 1974, Applied optics.

[4]  H. B. Rosenstock Multiphonon absorption by ionic crystals: Temperature dependence , 1973 .

[5]  Bulk and surface calorimetric measurements at CO wavelengths. , 1977, Applied optics.

[6]  Measuring the infrared absorption in thin film coatings. , 1977, Applied optics.

[7]  C. Flytzanis Dominant Second-Order Dipole-Moment Contribution in the Infrared Absorption of III-V Compounds , 1972 .

[8]  B. Bendow Optical properties of infrared transmitting materials , 1974 .

[9]  B. Bendow Temperature dependence of intrinsic multiphonon absorption in crystals , 1973 .

[10]  S. Ying,et al.  Theory of Multiphonon Absorption due to Anharmonicity in Crystals , 1973 .

[11]  G. Rupprecht Photon-Phonon Interaction in the Near Infrared , 1964 .

[12]  W. Steier,et al.  Investigation of infrared loss mechanisms in high‐resistivity GaAs , 1974 .

[13]  G. A. Slack,et al.  Optical Absorption of Y 3 Al 5 O 12 from 10- to 55 000- cm − 1 Wave Numbers , 1969 .

[14]  A. A. Maradudin,et al.  Temperature Dependence of the Absorption Coefficient of Alkali Halides in the Multiphonon Regime , 1973 .

[15]  A. A. Maradudin,et al.  Theory of lattice dynamics in the harmonic approximation , 1971 .

[16]  F. Wooten,et al.  Optical Properties of Solids , 1972 .

[17]  W. Runciman,et al.  Multiphonon infrared absorption spectra of MgO and CaO , 1973 .

[18]  D. Huber,et al.  Temperature Dependence of the Width and g Factor of a Purely Electronic Optical Transition in MnF 2 , 1969 .

[19]  S. Ying,et al.  Theory of multiphonon absorption due to nonlinear electric moments in crystals , 1974 .

[20]  James A. Harrington,et al.  Multiphonon absorption in ionic crystals , 1975 .

[21]  K. Namjoshi,et al.  Infrared absorption by alkali halides in the transparent regime and its temperature dependence , 1974 .

[22]  A. Hilton Infrared transmitting materials , 1973 .

[23]  François Gervais,et al.  Temperature dependence of transverse- and longitudinal-optic modes in TiO 2 (rutile) , 1974 .

[24]  C. Flytzanis,et al.  Infrared Dispersion of Second-Order Electric Susceptibilities in Semiconducting Compounds , 1972 .

[25]  M. Sparks,et al.  Exponential frequency dependence of multiphonon-summation infrared absorption☆ , 1972 .

[26]  C. J. Duthler,et al.  Extrinsic absorption in 10.6‐μm‐laser‐window materials due to molecular‐ion impurities , 1974 .

[27]  Alexei A. Maradudin,et al.  Temperature Dependence of the Width of the Fundamental Lattice-Vibration Absorption Peak in Ionic Crystals. II. Approximate Numerical Results , 1967 .

[28]  E. Kerr The alphaphone - - a method for measuring thin-film absorption at laser wavelengths. , 1973, Applied optics.

[29]  A. Maradudin,et al.  SCATTERING OF NEUTRONS BY AN ANHARMONIC CRYSTAL , 1962 .

[30]  J. J. Larkin,et al.  Molecular — impurity absorption in KC1 for infrared laser windows , 1975 .

[31]  Acoustic surface wave detection of radiative absorption , 1974 .

[32]  Alexei A. Maradudin,et al.  Theory of Infrared Absorption by Crystals in the High-Frequency Wing of Their Fundamental Lattice Absorption , 1973 .

[33]  Jacques I. Pankove,et al.  Optical Processes in Semiconductors , 1971 .

[34]  H S Bennett,et al.  Absorption coefficients of highly transparent solids: photoacoustic theory for cylindrical configurations. , 1976, Applied optics.

[35]  T. Deutsch The 10.6-μm absorption of KCl , 1974 .

[36]  A Hordvik,et al.  Photoacoustic measurements of surface and bulk absorption in HF/DF laser window materials. , 1977, Applied optics.

[37]  N. E. Massa,et al.  Multiphonon infrared absorption in the transparent regime of alkaline-earth fluorides , 1976 .

[38]  B. Szigeti Higher-order terms in the dielectric constant of ionic crystals , 1959, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[39]  M. Hass,et al.  Temperature Dependence of Multiphonon Absorption , 1973 .

[40]  H. Schlossberg,et al.  Photoacoustic technique for determining optical absorption coefficients in solids. , 1977, Applied optics.

[41]  M. Sparks,et al.  Theory of infrared absorption and material failure in crystals containing inclusions , 1973 .

[42]  P. Gianino,et al.  Optical performance evaluation of infrared transmitting materials , 1973 .

[43]  A Hordvik,et al.  Measurement techniques for small absorption coefficients: recent advances. , 1977, Applied optics.

[44]  François Gervais,et al.  Analysis of Multiphonon Absorption in Corundum , 1976 .

[45]  M. Hass,et al.  Residual absorption in infrared materials. , 1977, Applied optics.

[46]  E. Lauer,et al.  Containment of Positrons in a Mirror Machine , 1960 .

[47]  P. B. Macedo,et al.  Multiphonon absorption in As2S3As2Se3 glasses , 1974 .

[48]  P. Gianino,et al.  Thermal lensing of laser beams in optically transmitting materials , 1973 .

[49]  S. Ying,et al.  Absorption due to higher-order electric moments in transparent crystals , 1973 .

[50]  Thomas F. Deutsch,et al.  Laser window materials — An overview , 1975 .

[51]  O. Stafsudd,et al.  Refractive indices of ir materials: 10.6-microm ellipsometer measurements. , 1977, Applied optics.

[52]  P. Miles Temperature dependence of multiphonon absorption in zinc selenide. , 1977, Applied optics.

[53]  L. J. Sham,et al.  Theory of Multiphonon Absorption in Insulating Crystals , 1973 .

[54]  M. Born,et al.  Dynamical Theory of Crystal Lattices , 1954 .

[55]  Bernard Bendow,et al.  Optical Properties of Highly Transparent Solids , 1975 .

[56]  T. C. Mcgill,et al.  Infrared absorption in ionic insulators due to multiphonon processes , 1973 .

[57]  R. Glauber Time-Dependent Displacement Correlations and Inelastic Scattering by Crystals , 1955 .

[58]  P D Gianino,et al.  Pressure and stress dependence of the refractive index of transparent crystals. , 1974, Applied optics.

[59]  B. Bendow,et al.  Single-particle model for the frequency dependence of weak infrared absorption in crystals and molecules at T = 0 K , 1974 .

[60]  D. L. Stierwalt,et al.  Frequency dependence of multiphonon infrared absorption in the transparent regime of fluorite crystals , 1975 .

[61]  J. Birman,et al.  Theory of multiphonon absorption in the wings of internal vibrational modes of impurities in ionic crystals , 1974 .

[62]  A. Maradudin,et al.  Lattice Anharmonicity and Optical Absorption in Polar Crystals. II. Classical Treatment in the Linear Approximation , 1961 .

[63]  B. Bendow,et al.  Temperature dependence of the absorption coefficient of GaAs and ZnSe at 10.6 μm , 1974 .

[64]  L. Oster Astrophysics and the many body problem: edited by K. W. Ford. Brandeis Lectures in Theoretical Physics, Vol. 2. 438 pages, 6 × 9 in. New York, W. A. Benjamin Inc., 1963. Price, $9.00 (cloth); $5.95 (paper) , 1964 .

[65]  M. Lax,et al.  Infrared Lattice Absorption in Ionic and Homopolar Crystals , 1955 .

[66]  A. A. Maradudin,et al.  Lattice Anharmonicity and Optical Absorption in Polar Crystals. III. Quantum Mechanical Treatment in the Linear Approximation , 1962 .

[67]  K. Namjoshi,et al.  Infrared absorption due to multiphonon processes in the transparent regime of solids , 1974 .

[68]  H. B. Rosenstock,et al.  Infrared bulk and surface absorption by nearly transparent crystals. , 1976, Applied optics.

[69]  M. Klein,et al.  Libration of the Hydroxyl Ion in Alkali Halide Crystals , 1969 .

[70]  M. Hass,et al.  Multiphonon absorption of alkali halides and quasiselection rules , 1976 .

[71]  J. Dow,et al.  Toward a Unified Theory of Urbach's Rule and Exponential Absorption Edges , 1972 .

[72]  J. Hardy,et al.  Determination of the origin of the 10.6‐μm absorption in CO2 laser window materials , 1973 .

[73]  T. C. Mcgill,et al.  Temperature dependence of multiphonon absorption in ionic insulators , 1973 .

[74]  W. Price,et al.  Optical and dielectric properties and lattice dynamics of some fluorite structure ionic crystals , 1970, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[75]  Lu J. Sham,et al.  Explicit exponential frequency dependence of multiphonon infrared absorption , 1974 .

[76]  T. F. Deutsch,et al.  Absorption coefficient of infrared laser window materials , 1973 .

[77]  W. Visscher,et al.  Stationary nonequilibrium properties of a quantum-mechanical lattice with self-consistent reservoirs , 1975 .

[78]  A. Barker The effect of melting on the multiphonon infrared absorption spectra of KBr, NaCl and LiF , 1972 .

[79]  B. Bendow,et al.  Residual lattice absorption in semiconducting crystals: frequency and temperature dependence. , 1977, Applied optics.