Adaptive Evolution of a Lactose-Consuming Saccharomyces cerevisiae Recombinant

[1]  L. Wackett Metabolic engineering , 2009, Nature biotechnology.

[2]  A. K. Gombert,et al.  Application of the Cre-loxP system for multiple gene disruption in the yeast Kluyveromyces marxianus. , 2007, Journal of biotechnology.

[3]  J. Jiménez,et al.  Adaptive evolution by mutations in the FLO11 gene. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[4]  T. Jeffries,et al.  Engineering yeasts for xylose metabolism. , 2006, Current opinion in biotechnology.

[5]  M. Rubio‐Texeira,et al.  Endless versatility in the biotechnological applications of Kluyveromyces LAC genes. , 2006, Biotechnology advances.

[6]  G. Stephanopoulos,et al.  Improvement of Xylose Uptake and Ethanol Production in Recombinant Saccharomyces cerevisiae through an Inverse Metabolic Engineering Approach , 2005, Applied and Environmental Microbiology.

[7]  M. Rubio-Texeira,et al.  A comparative analysis of the GAL genetic switch between not-so-distant cousins: Saccharomyces cerevisiae versus Kluyveromyces lactis. , 2005, FEMS yeast research.

[8]  Jack T Pronk,et al.  Evolutionary engineering of mixed-sugar utilization by a xylose-fermenting Saccharomyces cerevisiae strain. , 2005, FEMS yeast research.

[9]  I. S. Pretorius,et al.  Mss11p Is a Central Element of the Regulatory Network That Controls FLO11 Expression and Invasive Growth in Saccharomyces cerevisiae , 2005, Genetics.

[10]  U. Sauer,et al.  Fermentation performance of engineered and evolved xylose‐fermenting Saccharomyces cerevisiae strains , 2004, Biotechnology and bioengineering.

[11]  B. Dujon,et al.  Genome evolution in yeasts , 2004, Nature.

[12]  Julian Adams Microbial evolution in laboratory environments. , 2004, Research in microbiology.

[13]  J. Pronk,et al.  Minimal metabolic engineering of Saccharomyces cerevisiae for efficient anaerobic xylose fermentation: a proof of principle. , 2004, FEMS yeast research.

[14]  Uwe Sauer,et al.  Evolutionary Engineering of Saccharomyces cerevisiae for Anaerobic Growth on Xylose , 2003, Applied and Environmental Microbiology.

[15]  Barbara M. Bakker,et al.  Metabolic Engineering of Glycerol Production in Saccharomyces cerevisiae , 2002, Applied and Environmental Microbiology.

[16]  L. Domingues,et al.  Alcohol production from cheese whey permeate using genetically modified flocculent yeast cells. , 2001, Biotechnology and bioengineering.

[17]  J. Sambrook,et al.  Molecular Cloning: A Laboratory Manual , 2001 .

[18]  M. Arévalo-Rodríguez,et al.  Lactose utilization by Saccharomyces cerevisiae strains expressing Kluyveromyces lactis LAC genes. , 2000, Journal of biotechnology.

[19]  V. Vinci,et al.  Improvement of microbial strains and fermentation processes , 2000, Applied Microbiology and Biotechnology.

[20]  António A. Vicente,et al.  Applications of yeast flocculation in biotechnological processes , 2000 .

[21]  K. Breunig,et al.  Genetics and molecular physiology of the yeast Kluyveromyces lactis. , 2000, Fungal genetics and biology : FG & B.

[22]  B Hauer,et al.  Environmentally directed mutations and their impact on industrial biotransformation and fermentation processes. , 2000, Current opinion in microbiology.

[23]  L. Domingues,et al.  Continuous ethanol fermentation of lactose by a recombinant flocculating Saccharomyces cerevisiae strain. , 1999, Biotechnology and bioengineering.

[24]  L. Domingues,et al.  Construction of a flocculent Saccharomyces cerevisiae fermenting lactose , 1999, Applied Microbiology and Biotechnology.

[25]  C. Brown,et al.  Multiple duplications of yeast hexose transport genes in response to selection in a glucose-limited environment. , 1998, Molecular biology and evolution.

[26]  J. Castrillo,et al.  Highly efficient assimilation of lactose by a metabolically engineered strain of Saccharomyces cerevisiae , 1998, Yeast.

[27]  J. Mccusker,et al.  Intergenic Transcribed Spacer PCR Ribotyping for Differentiation of Saccharomyces Species and Interspecific Hybrids , 1998, Journal of Clinical Microbiology.

[28]  M. Siso The biotechnological utilization of cheese whey: A review , 1996 .

[29]  D. Lohr,et al.  Transcriptional regulation in the yeast GAL gene family: a complex genetic network , 1995, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[30]  F T Zenke,et al.  Gal80 proteins of Kluyveromyces lactis and Saccharomyces cerevisiae are highly conserved but contribute differently to glucose repression of the galactose regulon , 1993, Molecular and cellular biology.

[31]  W. Zachariae,et al.  Expression of the transcriptional activator LAC9 (KlGAL4) in Kluyveromyces lactis is controlled by autoregulation , 1993, Molecular and cellular biology.

[32]  W. Zachariae,et al.  Glucose repression of lactose/galactose metabolism in Kluyveromyces lactis is determined by the concentration of the transcriptional activator LA1C9 (K1GAL4) , 1993 .

[33]  O. Poch,et al.  Sequence of the Kluyveromyces lactis beta-galactosidase: comparison with prokaryotic enzymes and secondary structure analysis. , 1992, Gene.

[34]  W. A. Scheffers,et al.  Effect of benzoic acid on metabolic fluxes in yeasts: A continuous‐culture study on the regulation of respiration and alcoholic fermentation , 1992, Yeast.

[35]  R. Schiestl,et al.  Improved method for high efficiency transformation of intact yeast cells. , 1992, Nucleic acids research.

[36]  W. Zachariae,et al.  Coregulation of the Kluyveromyces lactis lactose permease and beta-galactosidase genes is achieved by interaction of multiple LAC9 binding sites in a 2.6 kbp divergent promoter. , 1991, Nucleic acids research.

[37]  R. C. Dickson,et al.  Primary structure of the lactose permease gene from the yeast Kluyveromyces lactis. Presence of an unusual transcript structure. , 1988, The Journal of biological chemistry.

[38]  S. Bhairi,et al.  Identification of upstream activator sequences that regulate induction of the beta-galactosidase gene in Kluyveromyces lactis , 1987, Molecular and cellular biology.

[39]  M. Johnston A model fungal gene regulatory mechanism: the GAL genes of Saccharomyces cerevisiae. , 1987, Microbiological reviews.

[40]  L. Wray,et al.  Characterization of a positive regulatory gene, LAC9, that controls induction of the lactose-galactose regulon of Kluyveromyces lactis: structural and functional relationships to GAL4 of Saccharomyces cerevisiae , 1987, Molecular and cellular biology.

[41]  S. Johnston,et al.  GAL4 of Saccharomyces cerevisiae activates the lactose-galactose regulon of Kluyveromyces lactis and creates a new phenotype: glucose repression of the regulon , 1987, Molecular and cellular biology.

[42]  S. Johnston,et al.  Analysis of the Kluyveromyces lactis positive regulatory gene LAC9 reveals functional homology to, but sequence divergence from, the Saccharomyces cerevisiae GAL4 gene. , 1986, Nucleic acids research.

[43]  R. C. Dickson,et al.  Construction of strains of Saccharomyces cerevisiae that grow on lactose. , 1985, Proceedings of the National Academy of Sciences of the United States of America.

[44]  C. P. Hollenberg,et al.  Expression and processing of bacterial beta-lactamase in the yeast Saccharomyces cerevisiae. , 1981, Proceedings of the National Academy of Sciences of the United States of America.

[45]  M. M. Bradford A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. , 1976, Analytical biochemistry.

[46]  U. Sauer Evolutionary engineering of industrially important microbial phenotypes. , 2001, Advances in biochemical engineering/biotechnology.

[47]  T. White Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics , 1990 .