Comparison of two ICT solutions: desktop PC versus thin client computing

PurposeInformation communication technology (ICT) offers the chance of enhancing the efficiency of public services and economic processes. The use of server-based computing is supposed to reduce the energy and material consumption in ICT services. This hypothesis will be investigated and quantified looking at the whole life cycle of the products. In this paper, server-based computing in combination with thin clients (SBCTC) is compared to a typical desktop PC (DPC) workplace over a time period of 5 years.Materials and methodsThe LCA method used in this paper is focused on the impact category of global warming potential. The calculations were performed using the Microsoft® Excel-based methodology for ecodesign of energy-related products tool. This tool includes the requirements of energy-related products (Directive 2009/125/EC). Moreover, an input-orientated method—material input per service unit (MIPS)—is applied which allows for an additional comparison between the two ICT solutions.Results and discussionElectricity consumption could be identified as a crucial environmental impact factor of DPC and SBCTC with both methods. Depending on the user behavior, more than 200 kg CO2e can be saved by switching from DPC to SBCTC. Over 80 kg CO2e can be saved in the material and extraction life cycle stage. The largest savings are achieved in the material category electronics (about 70 kg CO2e). A correlation analysis between the results of global warming potential (GWP) and the MIPS category “air” shows that both indicators GWP and air lead to the same conclusions when evaluating life cycle stages and ICT material categories.ConclusionsTaking into account all assumptions made in this paper, SBCTC saves more than 65 % of greenhouse gas emissions compared to DPC during the entire life cycle. To ensure further profound comparisons of the ICT solutions, current data on the energy demand and detailed information on the composition of the IT products should be made available by industry.

[1]  Stephen Ruth,et al.  Green IT More Than a Three Percent Solution? , 2009, IEEE Internet Computing.

[2]  Amany von Oehsen,et al.  Langfristszenarien und Strategien für den Ausbau der erneuerbaren Energien in Deutschland bei Berücksichtigung der Entwicklung in Europa und global , 2012 .

[3]  Otto Andersen,et al.  Life cycle assessments of consumer electronics — are they consistent? , 2010 .

[4]  Paul Teehan,et al.  Sources of Variation in Life Cycle Assessments of Desktop Computers , 2012 .

[5]  Peter Hennicke,et al.  Mögliche Kernstrategien für eine zukunftsfähige Ressourcenpolitik der Bundesregierung : ökologische Modernisierung vorantreiben und Naturschranken ernst nehmen ; Policy Paper zu Arbeitspaket 7 des Projekts "Materialeffizienz und Ressourcenschonung" (MaRess) , 2010 .

[6]  Markus Stutz Product Carbon Footprint (PCF) Assessment of a Dell OptiPlex 780 Desktop – Results and Recommendations , 2011 .

[7]  A.S.G. Andrae,et al.  Uncertainty estimation by Monte Carlo Simulation applied to life cycle inventory of cordless phones and microscale metallization Processes , 2004, IEEE Transactions on Electronics Packaging Manufacturing.

[8]  Friedrich Schmidt-Bleek,et al.  Wieviel Umwelt braucht der Mensch? : MIPS-das Maß für ökologisches Wirtschaften , 1994 .

[9]  C. Weber Uncertainty and Variability in Product Carbon Footprinting , 2012 .

[10]  Peter Hennicke,et al.  „Materialeffizienz und Ressourcenschonung“ – Kernergebnisse des Projekts MaRess , 2010 .

[11]  Maria J. Welfens,et al.  MAIA : Einführung in die Material-Intensitäts-Analyse nach dem MIPS-Konzept , 1998 .

[12]  C. Davis,et al.  Harnessing Green IT: Principles and Practices , 2012 .

[13]  Arto Saari,et al.  MIPS analysis of natural resource consumption in two university buildings , 2006 .

[14]  Charlotte Roux,et al.  Greenhouse gas emissions from the consumption of electric and electronic equipment by Norwegian households. , 2011, Environmental science & technology.

[15]  O. Edenhofer,et al.  Mitigation from a cross-sectoral perspective , 2007 .

[16]  Michael Ritthoff,et al.  Calculating MIPS : resource productivity of products and services , 2002 .

[17]  Matthias Finkbeiner,et al.  Towards life cycle sustainability management , 2011 .

[18]  A. Andrae,et al.  Life cycle assessment of integrated circuit packaging technologies , 2011 .

[19]  Peter Hennicke,et al.  Großkonferenzen - Abschlussbericht zu AP 8 : Abschlussbericht zu den Ergebnissen des Arbeitspakets 8 "Großkonferenzen" des Projekts "Materialeffizienz und Ressourcenschonung" (MaRess) , 2010 .

[20]  A. Volchkov Server-based computing opportunities , 2002 .

[21]  Anders S. G. Andrae European LCA Standardisation of ICT: Equipment, Networks, and Services , 2011 .