Simultaneous seismic data interpolation and denoising with a new adaptive method based on dreamlet transform

S U M M A R Y Interpolation and random noise removal is a pre-requisite for multichannel techniques because the irregularity and random noise in observed data can affect their performances. Projection Onto Convex Sets (POCS) method can better handle seismic data interpolation if the data’s signal-to-noise ratio (SNR) is high, while it has difficulty in noisy situations because it inserts the noisy observed seismic data in each iteration. Weighted POCS method can weaken the noise effects, while the performance is affected by the choice of weight factors and is still unsatisfactory. Thus, a new weighted POCS method is derived through the Iterative Hard Threshold (IHT) view, and in order to eliminate random noise, a new adaptive method is proposed to achieve simultaneous seismic data interpolation and denoising based on dreamlet transform. Performances of the POCS method, the weighted POCS method and the proposed method are compared in simultaneous seismic data interpolation and denoising which demonstrate the validity of the proposed method. The recovered SNRs confirm that the proposed adaptive method is the most effective among the three methods. Numerical examples on synthetic and real data demonstrate the validity of the proposed adaptive method.

[1]  Yu Geng,et al.  Preliminary study on Dreamlet based compressive sensing data recovery , 2013 .

[2]  Felix J. Herrmann,et al.  Application of randomized sampling schemes to curvelet-based sparsity-promoting seismic data recovery , 2013 .

[3]  Juefu Wang,et al.  Seismic data interpolation by greedy local Radon transform , 2010 .

[4]  Hassan Mansour,et al.  Improved wavefield reconstruction from randomized sampling via weighted one-norm minimization , 2013 .

[5]  R. Abma,et al.  3D interpolation of irregular data with a POCS algorithm , 2006 .

[6]  Zhou Yu,et al.  Wavelet-Radon domain dealiasing and interpolation of seismic data , 2007 .

[7]  Jinghuai Gao,et al.  On analysis-based two-step interpolation methods for randomly sampled seismic data , 2013, Comput. Geosci..

[8]  Yu Geng,et al.  Physical wavelet defined on an observation plane and the Dreamlet , 2011 .

[9]  Jinghuai Gao,et al.  Curvelet-based POCS interpolation of nonuniformly sampled seismic records , 2012 .

[10]  Jianwei Ma,et al.  Three-dimensional irregular seismic data reconstruction via low-rank matrix completion , 2013 .

[11]  Chen Xiao Seismic data reconstruction based on jittered sampling and curvelet transform , 2013 .

[12]  Yu Zhang,et al.  Antileakage Fourier transform for seismic data regularization in higher dimensions , 2010 .

[13]  Mostafa Naghizadeh,et al.  Seismic data interpolation and denoising in the frequency-wavenumber domain , 2012 .

[14]  M. Sacchi,et al.  Simultaneous seismic data denoising and reconstruction via multichannel singular spectrum analysis , 2011 .

[15]  Mauricio D. Sacchi,et al.  Convergence improvement and noise attenuation considerations for beyond alias projection onto convex sets reconstruction , 2013 .

[16]  Benfeng Wang,et al.  Curvelet-based 3D Reconstruction of Digital Cores Using POCS Method , 2015 .

[17]  Jianwei Ma,et al.  Seismic data restoration via data-driven tight frame , 2014 .

[18]  Mauricio D. Sacchi,et al.  Vector reconstruction of multicomponent seismic data , 2013 .

[19]  Kristopher A. Innanen,et al.  Seismic data interpolation using a fast generalized Fourier transform , 2011 .

[20]  Mauricio D. Sacchi,et al.  Accurate interpolation with high-resolution time-variant Radon transforms , 2002 .

[21]  Mauricio D. Sacchi,et al.  Multistep autoregressive reconstruction of seismic records , 2007 .

[22]  Aria Abubakar,et al.  Source-receiver compression scheme for full-waveform seismic inversion , 2011 .

[23]  S. Spitz Seismic trace interpolation in the F-X domain , 1991 .

[24]  Mauricio D. Sacchi,et al.  A fast reduced-rank interpolation method for prestack seismic volumes that depend on four spatial dimensions , 2013 .

[25]  Xiaohong Chen,et al.  Seismic data reconstruction based on CS and Fourier theory , 2013, Applied Geophysics.

[26]  Ignace Loris,et al.  Nonlinear regularization techniques for seismic tomography , 2008, J. Comput. Phys..

[27]  F. Herrmann,et al.  Simply denoise: Wavefield reconstruction via jittered undersampling , 2008 .

[28]  Ru-Shan Wu,et al.  Target-oriented beamlet migration based on Gabor-Daubechies frame decomposition , 2006 .

[29]  Xiaohong Chen,et al.  Noncausal f–x–y regularized nonstationary prediction filtering for random noise attenuation on 3D seismic data , 2013 .

[30]  Jinghuai Gao,et al.  Dreamlet Transform Applied to Seismic Data Compression And Its Effects On Migration , 2009 .

[31]  Mauricio D. Sacchi,et al.  Beyond alias hierarchical scale curvelet interpolation of regularly and irregularly sampled seismic data , 2010 .

[32]  Mauricio D. Sacchi,et al.  On sampling functions and Fourier reconstruction methods , 2010 .

[33]  Laurent Demanet,et al.  Fast Discrete Curvelet Transforms , 2006, Multiscale Model. Simul..

[34]  Yu Geng,et al.  Dreamlet-based interpolation using POCS method , 2014 .

[35]  Jianwei Ma,et al.  Simultaneous dictionary learning and denoising for seismic data , 2014 .

[36]  Joshua Ronen,et al.  Wave‐equation trace interpolation , 1987 .

[37]  Hassan Mansour,et al.  Seismic Data Interpolation and Denoising Using SVD-free Low-rank Matrix Factorization , 2013, London 2013, 75th eage conference en exhibition incorporating SPE Europec.

[38]  Guochang Liu,et al.  Irregular seismic data reconstruction based on exponential threshold model of POCS method , 2010 .

[39]  F. Herrmann,et al.  Non-linear primary-multiple separation with directional curvelet frames , 2007 .

[40]  Jitao Ma,et al.  High-order sparse Radon transform for AVO-preserving data reconstruction , 2014 .

[41]  I. Daubechies,et al.  An iterative thresholding algorithm for linear inverse problems with a sparsity constraint , 2003, math/0307152.

[42]  T. Blumensath,et al.  Iterative Thresholding for Sparse Approximations , 2008 .

[43]  H Stark,et al.  High-resolution image recovery from image-plane arrays, using convex projections. , 1989, Journal of the Optical Society of America. A, Optics and image science.

[44]  Yangkang Chen,et al.  Random noise attenuation by f-x empirical mode decomposition predictive filtering , 2014 .

[45]  N. Kreimer,et al.  Tensor completion based on nuclear norm minimization for 5D seismic data reconstruction , 2013 .

[46]  Felix J. Herrmann,et al.  Non-parametric seismic data recovery with curvelet frames , 2008 .

[47]  Mike E. Davies,et al.  Iterative Hard Thresholding for Compressed Sensing , 2008, ArXiv.