Aerosol extinction coefficient profile retrieval in the oxygen A-band considering multiple scattering atmosphere. Test case : SCIAMACHY nadir simulated measurements

Abstract A multiple scattering inversion procedure for the aerosol extinction coefficient profile retrieval and error assessment in the oxygen A-band, for passive remote sensing instruments, has been developed. The procedure has been applied to SCIAMACHY nadir simulated measurements to investigate its effectiveness in the troposphere. The inversion procedure consists of a multiple scattering Forward Model, an inversion method and a complete sensitivity and error assessment tool. The Forward Model is based on LIDORT code; the inversion method, the sensitivity study and the complete error assessment are based on Optimal Estimation. The sensitivity and error analysis has been derived to investigate the profile retrieval errors due to the uncertainty of different aerosol optical properties, molecular and surface parameters. The analysis confirms that the profile retrieval accuracy and vertical resolution are strongly dependent on the oxygen A-band spectral resolution. The moderately high SCIAMACHY spectral resolution (0.4 nm in the oxygen A-band) results in distinguishing a maximum of three aerosol layers in troposphere. The SCIAMACHY tropospheric aerosol profile retrieval is shown to be highly sensitive to aerosol optical properties as phase function and single scattering albedo. The sensitivity study reveals an improvement of information content increasing the solar zenith angle and decreasing the surface albedo. As regards the forward model, negligible errors occur as the number of streams exceeds 6.

[1]  Paul Ginoux,et al.  A Long-Term Record of Aerosol Optical Depth from TOMS Observations and Comparison to AERONET Measurements , 2002 .

[2]  Kenneth Sassen,et al.  Indirect climate forcing over the western US from Asian dust storms , 2002 .

[3]  V. Masson,et al.  Satellite climatology of African dust transport in the Mediterranean atmosphere , 1998 .

[4]  M. Noguer,et al.  Climate change 2001: The scientific basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change , 2002 .

[5]  Michael Buchwitz,et al.  Development of a correlated-k distribution band model scheme for the radiative transfer program GOMETRAN/SCIATRAN for retrieval of atmospheric constituents from SCIMACHY/ENVISAT-1 data , 1998, Remote Sensing.

[6]  W. Paul Menzel,et al.  Remote sensing of cloud, aerosol, and water vapor properties from the moderate resolution imaging spectrometer (MODIS) , 1992, IEEE Trans. Geosci. Remote. Sens..

[7]  D. Fussen,et al.  A global climatology of stratospheric aerosol size distribution parameters derived from SAGE II data over the period 1984–2000: 1. Methodology and climatological observations , 2004 .

[8]  K. J. Ritter,et al.  High-resolution spectroscopy of the oxygen A band , 1987 .

[9]  M. R. Perrone,et al.  Lidar measurements of tropospheric water vapor and aerosol profiles over southeastern Italy , 2003 .

[10]  E. Vermote,et al.  Operational remote sensing of tropospheric aerosol over land from EOS moderate resolution imaging spectroradiometer , 1997 .

[11]  D. O'Brien,et al.  High-Precision, High-Resolution Measurements of Absorption in the Oxygen A-Band , 1997 .

[12]  David J. Diner,et al.  Performance of the MISR instrument during its first 20 months in Earth orbit , 2002, IEEE Trans. Geosci. Remote. Sens..

[13]  M. Kulmala,et al.  Nucleation and Atmospheric Aerosols , 2007 .

[14]  Gian Paolo Gobbi,et al.  The vertical distribution of aerosols, Saharan dust and cirrus clouds in Rome (Italy) in the year 2001 , 2003 .

[15]  J. Prospero Long‐term measurements of the transport of African mineral dust to the southeastern United States: Implications for regional air quality , 1999 .

[16]  F. Torricella,et al.  Atmospheric aerosol optical properties: a database of radiative characteristics for different components and classes. , 1997, Applied optics.

[17]  J. Prospero,et al.  Atmospheric transport of soil dust from Africa to South America , 1981, Nature.

[18]  J. Houghton,et al.  Climate change 2001 : the scientific basis , 2001 .

[19]  J. Schneider,et al.  Three years of routine Raman lidar measurements of tropospheric aerosols: Backscattering, extinction, and residual layer height , 2002 .

[20]  J. Hansen,et al.  Radiative forcing and climate response , 1997 .

[21]  Rodolfo Guzzi,et al.  Retrieval of aerosol properties over the ocean using Global Ozone Monitoring Experiment measurements: Method and applications to test cases , 1999 .

[22]  G. Gobbi,et al.  Altitude-resolved properties of a Saharan dust event over the Mediterranean , 2000 .

[23]  K. Stamnes,et al.  Numerically stable algorithm for discrete-ordinate-method radiative transfer in multiple scattering and emitting layered media. , 1988, Applied optics.

[24]  D. Fussen,et al.  A global climatology of stratospheric aerosol size distribution parameters derived from SAGE II data over the period 1984–2000: 2. Reference data , 2004 .

[25]  Kathleen A. Crean,et al.  Regional aerosol retrieval results from MISR , 2002, IEEE Trans. Geosci. Remote. Sens..

[26]  O. Boucher,et al.  Estimates of the direct and indirect radiative forcing due to tropospheric aerosols: A review , 2000 .

[27]  K. Shine Radiative Forcing of Climate Change , 2000 .

[28]  Teruyuki Nakajima,et al.  Algorithms for radiative intensity calculations in moderately thick atmospheres using a truncation approximation , 1988 .

[29]  W. Wiscombe The Delta–M Method: Rapid Yet Accurate Radiative Flux Calculations for Strongly Asymmetric Phase Functions , 1977 .

[30]  Michael Eisinger,et al.  The Global Ozone Monitoring Experiment (GOME): Mission Concept and First Scientific Results , 1999 .

[31]  D. Murtagh,et al.  Aerosol optical thickness retrieval from GOME data in the oxygen A-band , 1997 .

[32]  C. Rodgers Characterization and Error Analysis of Profiles Retrieved From Remote Sounding Measurements , 1990 .

[33]  K. Chance,et al.  Ring effect studies: Rayleigh scattering, including molecular parameters for rotational Raman scattering, and the Fraunhofer spectrum. , 1997, Applied optics.

[34]  M. Gabella,et al.  Retrieval of aerosol profile variations from reflected radiation in the oxygen absorption a band. , 1999, Applied optics.

[35]  G. Fiocco,et al.  Saharan dust profiles measured by lidar at Lampedusa , 2001 .

[36]  P. Bhartia,et al.  Derivation of aerosol properties from satellite measurements of backscattered ultraviolet radiation , 1998 .

[37]  J. Haywood,et al.  The effect of anthropogenic sulfate and soot aerosol on the clear sky planetary radiation budget , 1995 .

[38]  Maria Fabrizia Buongiorno,et al.  Mt. Etna sulfur dioxide flux monitoring using ASTER-TIR data and atmospheric observations , 2006 .

[39]  R. Spurr Linearized radiative transfer theory : a general discrete ordinate approach to the calculation of radiances and analytic weighting functions, with application to atmospheric remote sensing , 2001 .

[40]  J. Burrows,et al.  Fast weighting functions for retrievals from limb scattering measurements , 2003 .

[41]  Andrew K. Heidinger,et al.  Molecular Line Absorption in a Scattering Atmosphere. Part II: Application to Remote Sensing in the O2 A band , 2000 .

[42]  J. Prospero,et al.  Long-Range Atmospheric Transport of Soil Dust from Asia to the Tropical North Pacific: Temporal Variability , 1980, Science.

[43]  M. Buchwitz,et al.  SCIAMACHY: Mission Objectives and Measurement Modes , 1999 .

[44]  Ramaswamy,et al.  Tropospheric Aerosol Climate Forcing in Clear-Sky Satellite Observations over the Oceans. , 1999, Science.

[45]  J. Seinfeld,et al.  Radiative forcing by mineral dust aerosols : sensitivity to key variables , 1998 .

[46]  J. Kaiser Atmospheric Parameter Retrieval from UV-vis-NIR Limb Scattering Measurements , 2001 .

[47]  Clive D Rodgers,et al.  Inverse Methods for Atmospheric Sounding: Theory and Practice , 2000 .

[48]  Christos Zerefos,et al.  Tropospheric LIDAR aerosol measurements and sun photometric observations at Thessaloniki, Greece , 2000 .

[49]  Philip B. Russell,et al.  An overview of the ACE-2 clear sky column closure experiment (CLEARCOLUMN) , 2000 .

[50]  A. Lacis,et al.  Aerosol retrievals over the ocean by use of channels 1 and 2 AVHRR data: sensitivity analysis and preliminary results. , 1999, Applied optics.

[51]  Makiko Sato,et al.  Potential climate impact of Mount Pinatubo eruption , 1992 .

[52]  D. Hofmann Twenty Years Of Balloon-Borne Tropospheric Aerosol Measurements , 1993 .