On special solutions of second and fourth Painlevé hierarchies

In this Letter, we give special solutions of second and fourth Painleve hierarchies derived by Gordoa, Joshi, and Pickering. We show that for certain choice of the parameters each nth member of these hierarchies has a special solution in terms of an nth order differential equation. Furthermore we derive a relation between these two hierarchies.

[1]  Nikolai A. Kudryashov,et al.  Fourth-order analogies to the Painlevé equations , 2002 .

[2]  P. R. Gordoa,et al.  Nonisospectral scattering problems: A key to integrable hierarchies , 1999 .

[3]  A. Sakka Schlesinger transformations for the second members of PII and PIV hierarchies , 2007 .

[4]  Athanassios S. Fokas,et al.  On a unified approach to transformations and elementary solutions of Painlevé equations , 1982 .

[5]  P. Clarkson,et al.  Bäcklund transformations for the second Painlevé hierarchy: a modified truncation approach , 1998, solv-int/9811014.

[6]  N. Kudryashov One generalization of the second Painlevé hierarchy , 2002 .

[7]  Nicolai A. Kudryashov,et al.  The first and second Painlevé equations of higher order and some relations between them , 1997 .

[8]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[9]  Mark J. Ablowitz,et al.  Exact Linearization of a Painlevé Transcendent , 1977 .

[10]  U. Muğan,et al.  Painlevé test and the first Painlevé hierarchy , 1999 .

[11]  A. Hone Non-autonomous He´non-Heiles systems , 1997, solv-int/9703005.

[12]  Fahd Jrad,et al.  Painlevé Test and Higher Order Differential Equations , 2002, nlin/0301043.

[13]  P. R. Gordoa,et al.  On a Generalized 2+1 Dispersive Water Wave Hierarchy , 2001 .

[14]  P. R. Gordoa,et al.  Second and fourth Painlevé hierarchies and Jimbo-Miwa linear problems , 2006 .

[15]  H. Airault,et al.  Rational solutions of Painleve equations , 1979 .

[16]  Christopher M. Cosgrove,et al.  Higher‐Order Painlevé Equations in the Polynomial Class II: Bureau Symbol P1 , 2006 .