Determination of optimal hierarchical fuzzy controller parameters according to loading condition with ANN

This paper represents an artificial neural network (ANN) backpropagation algorithm is used to choose best coefficients of hierarchical fuzzy power system stabilizer (HFPSS). PSS is used for stability enhancement of a single machine infinite bus (SMIB) power system. ANN algorithm is used to predict load condition of the power system. And according to the predicted load condition ANN determinates choosing optimal parameters of the hierarchical fuzzy controller (HFC) to achieve better performance. Simulation results are compared with conventional PSS (CPSS) to show the effectiveness of the proposed controller. Also quantitative criterias of measuring performance is computed for 16 loading conditions.

[1]  P. Lakshmi,et al.  Stability enhancement of a multimachine power system using fuzzy logic based power system stabilizer tuned through genetic algorithm , 2000 .

[2]  Shohachiro Nakanishi,et al.  Functional Completeness of Hierarchical Fuzzy Modeling , 1998, Inf. Sci..

[3]  Hoay Beng Gooi,et al.  Neural network based power system stabilizers , 1993, Proceedings 1993 The First New Zealand International Two-Stream Conference on Artificial Neural Networks and Expert Systems.

[4]  H. Salehfar,et al.  A neural network preestimation filter for bad-data detection and identification in power system state estimation , 1995 .

[5]  Simon Haykin,et al.  Neural Networks: A Comprehensive Foundation , 1998 .

[6]  Abdel-Latif Elshafei,et al.  Robust robot control enhanced by a hierarchical adaptive fuzzy algorithm , 2004, Eng. Appl. Artif. Intell..

[7]  Om P. Malik,et al.  Artificial neural network power system stabilizers in multi-machine power system environment , 1995 .

[8]  Robert J. Hammell,et al.  An adaptive hierarchical fuzzy model , 1996 .

[9]  M. Orabi,et al.  A neuro-optimal control power system stabilizer: a comparative study , 2004, Canadian Conference on Electrical and Computer Engineering 2004 (IEEE Cat. No.04CH37513).

[10]  Han-Xiong Li,et al.  Fuzzy variable structure control , 1997, IEEE Trans. Syst. Man Cybern. Part B.

[11]  P. Kundur,et al.  Power system stability and control , 1994 .

[12]  Jun Zhou,et al.  Hierarchical fuzzy control , 1991 .

[13]  M. L. Kothari,et al.  Intelligent dual input power system stabilizer , 2003 .

[14]  A. M. El-Zonkoly,et al.  Optimal tuning of power systems stabilizers and AVR gains using particle swarm optimization , 2006, Expert Syst. Appl..

[15]  Han-Xiong Li,et al.  Higher order fuzzy control structure for higher order or time-delay systems , 1999, IEEE Trans. Fuzzy Syst..

[16]  Bijnan Bandyopadhyay,et al.  Design of power system stabilizer for single machine system using robust fast output sampling feedback technique , 2003 .

[17]  N.H. Abbasy,et al.  Power system state estimation: ANN application to bad data detection and identification , 1996, Proceedings of IEEE. AFRICON '96.

[18]  D. A. Linkens,et al.  Training of neurofuzzy power system stabilisers using genetic algorithms , 2000 .

[19]  D. Linkens,et al.  A hierarchical multivariable fuzzy controller for learning with genetic algorithms , 1996 .

[20]  Ming-Ling Lee,et al.  Modeling of hierarchical fuzzy systems , 2003, Fuzzy Sets Syst..

[21]  Li-Xin Wang,et al.  Analysis and design of hierarchical fuzzy systems , 1999, IEEE Trans. Fuzzy Syst..

[22]  Charles Concordia,et al.  Concepts of Synchronous Machine Stability as Affected by Excitation Control , 1969 .

[23]  O. P. Malik,et al.  A multi-input power system stabilizer based on artificial neural networks , 1993, IEEE WESCANEX 93 Communications, Computers and Power in the Modern Environment - Conference Proceedings.