Evaluation of MODIS SWIR and NIR-SWIR atmospheric correction algorithms using SeaBASS data

[1]  Menghua Wang,et al.  The NIR-SWIR combined atmospheric correction approach for MODIS ocean color data processing. , 2007, Optics express.

[2]  Menghua Wang,et al.  Detection of turbid waters and absorbing aerosols for the MODIS ocean color data processing , 2007 .

[3]  Menghua Wang Remote sensing of the ocean contributions from ultraviolet to near-infrared using the shortwave infrared bands: simulations. , 2007, Applied optics.

[4]  Wei Shi,et al.  MODIS‐derived ocean color products along the China east coastal region , 2007 .

[5]  Menghua Wang Aerosol polarization effects on atmospheric correction and aerosol retrievals in ocean color remote sensing. , 2006, Applied optics.

[6]  Wei Shi,et al.  Cloud Masking for Ocean Color Data Processing in the Coastal Regions , 2006, IEEE Transactions on Geoscience and Remote Sensing.

[7]  Menghua Wang,et al.  Effects of ocean surface reflectance variation with solar elevation on normalized water-leaving radiance. , 2006, Applied optics.

[8]  P. J. Werdell,et al.  A multi-sensor approach for the on-orbit validation of ocean color satellite data products , 2006 .

[9]  P. J. Werdell,et al.  An improved in-situ bio-optical data set for ocean color algorithm development and satellite data product validation , 2005 .

[10]  Menghua Wang,et al.  Estimation of ocean contribution at the MODIS near‐infrared wavelengths along the east coast of the U.S.: Two case studies , 2005 .

[11]  Menghua Wang,et al.  Study of the Sea‐Viewing Wide Field‐of‐View Sensor (SeaWiFS) aerosol optical property data over ocean in combination with the ocean color products , 2005 .

[12]  M. Pinkerton,et al.  Modification to the atmospheric correction of SeaWiFS ocean colour images over turbid waters , 2005 .

[13]  H. Gordon,et al.  Normalized water-leaving radiance: revisiting the influence of surface roughness. , 2005, Applied optics.

[14]  Stanford B. Hooker,et al.  An overview of the SeaWiFS project and strategies for producing a climate research quality global ocean bio-optical time series , 2004 .

[15]  Kirk Knobelspiesse,et al.  Unique data repository facilitates ocean color satellite validation , 2003 .

[16]  R. Arnone,et al.  Deriving inherent optical properties from water color: a multiband quasi-analytical algorithm for optically deep waters. , 2002, Applied optics.

[17]  Stéphane Maritorena,et al.  Optimization of a semianalytical ocean color model for global-scale applications. , 2002, Applied optics.

[18]  S. Maritorena,et al.  Atmospheric correction of satellite ocean color imagery: the black pixel assumption. , 2000, Applied optics.

[19]  K. Ruddick,et al.  Atmospheric correction of SeaWiFS imagery for turbid coastal and inland waters. , 2000, Applied optics.

[20]  James L. Mueller,et al.  SeaWiFS Algorithm for the Diffuse Attenuation Coefficient K(490) Using Water-Leaving Radiances at 490 and 555nm , 2000 .

[21]  M. Kahru,et al.  Ocean Color Chlorophyll Algorithms for SEAWIFS , 1998 .

[22]  H. Gordon Atmospheric correction of ocean color imagery in the Earth Observing System era , 1997 .

[23]  Menghua Wang,et al.  Retrieval of water-leaving radiance and aerosol optical thickness over the oceans with SeaWiFS: a preliminary algorithm. , 1994, Applied optics.

[24]  B Gentili,et al.  Diffuse reflectance of oceanic waters: its dependence on Sun angle as influenced by the molecular scattering contribution. , 1991, Applied optics.