Experiments with Deterministic ω-Automata for Formulas of Linear Temporal Logic

This paper addresses the problem of generating deterministic ω-automata for formulas of linear temporal logic, which can be solved by applying wellknown algorithms to construct a nondeterministic Büchi automaton for the given formula on which we then apply a determinization algorithm. We study here in detail Safra’s determinization algorithm, present several heuristics that attempt to decrease the size of the resulting automata and report on experimental results.

[1]  A. Prasad Sistla,et al.  Deciding branching time logic , 1984, STOC '84.

[2]  Robert E. Tarjan,et al.  Three Partition Refinement Algorithms , 1987, SIAM J. Comput..

[3]  E. Allen Emerson,et al.  Temporal and Modal Logic , 1991, Handbook of Theoretical Computer Science, Volume B: Formal Models and Sematics.

[4]  Wolfgang Thomas,et al.  Handbook of Theoretical Computer Science, Volume B: Formal Models and Semantics , 1990 .

[5]  Robert K. Brayton,et al.  Deterministic w Automata vis-a-vis Deterministic Buchi Automata , 1994, ISAAC.

[6]  Pierre Wolper,et al.  Simple on-the-fly automatic verification of linear temporal logic , 1995, PSTV.

[7]  Robert K. Brayton,et al.  Language containment of non-deterministic omega-automata , 1995, CHARME.

[8]  David E. Muller,et al.  Simulating Alternating Tree Automata by Nondeterministic Automata: New Results and New Proofs of the Theorems of Rabin, McNaughton and Safra , 1995, Theor. Comput. Sci..

[9]  Wolfgang Thomas,et al.  Languages, Automata, and Logic , 1997, Handbook of Formal Languages.

[10]  Gerard J. Holzmann,et al.  The Model Checker SPIN , 1997, IEEE Trans. Software Eng..

[11]  Orna Kupferman,et al.  Freedom, weakness, and determinism: from linear-time to branching-time , 1998, Proceedings. Thirteenth Annual IEEE Symposium on Logic in Computer Science (Cat. No.98CB36226).

[12]  Christel Baier,et al.  Model checking for a probabilistic branching time logic with fairness , 1998, Distributed Computing.

[13]  George S. Avrunin,et al.  Patterns in property specifications for finite-state verification , 1999, Proceedings of the 1999 International Conference on Software Engineering (IEEE Cat. No.99CB37002).

[14]  L. D. Alfaro The Verification of Probabilistic Systems Under Memoryless Partial-Information Policies is Hard , 1999 .

[15]  Moshe Y. Vardi Probabilistic Linear-Time Model Checking: An Overview of the Automata-Theoretic Approach , 1999, ARTS.

[16]  Orna Kupferman,et al.  Model Checking of Safety Properties , 1999, CAV.

[17]  Kousha Etessami,et al.  Optimizing Büchi Automata , 2000, CONCUR.

[18]  Stephan Merz,et al.  Model Checking , 2000 .

[19]  Fabio Somenzi,et al.  Efficient Büchi Automata from LTL Formulae , 2000, CAV.

[20]  Heikki Tauriainen,et al.  AUTOMATED TESTING OF BUCHI AUTOMATA TRANSLATORS FOR LINEAR TEMPORAL LOGIC , 2000 .

[21]  Kousha Etessami,et al.  Fair Simulation Relations, Parity Games, and State Space Reduction for Büchi Automata , 2001, ICALP.

[22]  Christof Löding,et al.  Efficient minimization of deterministic weak omega-automata , 2001, Inf. Process. Lett..

[23]  Paul Gastin,et al.  Fast LTL to Büchi Automata Translation , 2001, CAV.

[24]  Thomas Wilke,et al.  Automata logics, and infinite games: a guide to current research , 2002 .

[25]  Carsten Fritz,et al.  Constructing Büchi Automata from Linear Temporal Logic Using Simulation Relations for Alternating Büchi Automata , 2003, CIAA.

[26]  Roberto Sebastiani,et al.  "More Deterministic" vs. "Smaller" Büchi Automata for Efficient LTL Model Checking , 2003, CHARME.

[27]  Christel Baier,et al.  Linear Time Logic and Deterministic omega-Automata , 2005 .

[28]  Wolfgang Thomas,et al.  Observations on determinization of Büchi automata , 2005, Theor. Comput. Sci..