The hard-core model on random graphs revisited

We revisit the classical hard-core model, also known as independent set and dual to vertex cover problem, where one puts particles with a first-neighbor hard-core repulsion on the vertices of a random graph. Although the case of random graphs with small and very large average degrees respectively are quite well understood, they yield qualitatively different results and our aim here is to reconciliate these two cases. We revisit results that can be obtained using the (heuristic) cavity method and show that it provides a closed-form conjecture for the exact density of the densest packing on random regular graphs with degree K>=20, and that for K>16 the nature of the phase transition is the same as for large K. This also shows that the hard-code model is the simplest mean-field lattice model for structural glasses and jamming.

[1]  Alexander K. Hartmann and Martin Weigt,et al.  Phase transitions in combinatorial optimization problems , 2013 .

[2]  Colin McDiarmid,et al.  Algorithmic theory of random graphs , 1997 .

[3]  Giorgio Parisi,et al.  Mean-field theory of hard sphere glasses and jamming , 2008, 0802.2180.

[4]  Yong Chen,et al.  Statistical Neurodynamics for Sequence Processing Neural Networks with Finite Dilution , 2007, ISNN.

[5]  M. Mézard,et al.  Random K-satisfiability problem: from an analytic solution to an efficient algorithm. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[6]  J. van Leeuwen,et al.  Theoretical Computer Science , 2003, Lecture Notes in Computer Science.

[7]  Maytham Safar,et al.  Hard Constrained Vertex-Cover Communication Algorithm for WSN , 2007, EUC.

[8]  Alexander K. Hartmann,et al.  Statistical mechanics of the vertex-cover problem , 2003 .

[9]  Amin Coja-Oghlan,et al.  On independent sets in random graphs , 2010, SODA '11.

[10]  Cristopher Moore,et al.  Independent Sets in Random Graphs from the Weighted Second Moment Method , 2010, APPROX-RANDOM.

[11]  Monaldo Mastrolilli,et al.  Single Machine Precedence Constrained Scheduling Is a Vertex Cover Problem , 2009, Algorithmica.

[12]  S. Franz,et al.  Replica bounds for diluted non-Poissonian spin systems , 2003, cond-mat/0307367.

[13]  Shao-Meng Qin,et al.  Network growth approach to macroevolution in ecosystems , 2006 .

[14]  G. Biroli,et al.  Theoretical perspective on the glass transition and amorphous materials , 2010, 1011.2578.

[15]  Madhu Sudan,et al.  Limits of local algorithms over sparse random graphs , 2013, ITCS.

[16]  Yong Chen,et al.  Transient dynamics of sparsely connected Hopfield neural networks with arbitrary degree distributions , 2007, 0704.1007.

[17]  Hendrik B. Geyer,et al.  Journal of Physics A - Mathematical and General, Special Issue. SI Aug 11 2006 ?? Preface , 2006 .

[18]  Marc Mézard,et al.  Lattice glass models. , 2002, Physical review letters.

[19]  Lianchun Yu,et al.  Transient dynamics for sequence-processing neural networks: effect of degree distributions. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[20]  H. Kesten,et al.  Limit theorems for decomposable multi-dimensional Galton-Watson processes , 1967 .

[21]  Journal of Chemical Physics , 1932, Nature.

[22]  Pan Zhang Inference of Kinetic Ising Model on Sparse Graphs , 2012 .

[23]  M. Mézard,et al.  Statistical mechanics of the hitting set problem. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[24]  Nayantara Bhatnagar,et al.  Reconstruction Threshold for the Hardcore Model , 2010, APPROX-RANDOM.

[25]  F. Krzakala,et al.  Potts glass on random graphs , 2007, 0710.3336.

[26]  M. Weigt,et al.  Minimal vertex covers on finite-connectivity random graphs: a hard-sphere lattice-gas picture. , 2000, Physical review. E, Statistical, nonlinear, and soft matter physics.

[27]  Alan M. Frieze,et al.  On the independence number of random graphs , 1990, Discret. Math..

[28]  October I Physical Review Letters , 2022 .

[29]  M. Talagrand,et al.  Bounds for diluted mean-fields spin glass models , 2004, math/0405357.

[30]  M. Mézard,et al.  Glass models on Bethe lattices , 2003, cond-mat/0307569.

[31]  R Zecchina,et al.  Inference and learning in sparse systems with multiple states. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[32]  Kathy P. Wheeler,et al.  Reviews of Modern Physics , 2013 .

[33]  Osamu Watanabe,et al.  ELC International Meeting on Inference, Computation, and Spin Glasses (ICSG2013) , 2013 .

[34]  Ke Xu,et al.  Analytical and belief-propagation studies of random constraint satisfaction problems with growing domains. , 2012, Physical review. E, Statistical, nonlinear, and soft matter physics.

[35]  Haijun Zhou,et al.  Vertex cover problem studied by cavity method: Analytics and population dynamics , 2003 .

[36]  G. Winskel What Is Discrete Mathematics , 2007 .

[37]  Alexander K. Hartmann,et al.  Statistical mechanics perspective on the phase transition in vertex covering of finite-connectivity random graphs , 2000, Theor. Comput. Sci..

[38]  V. Buchstaber,et al.  Mathematical Proceedings of the Cambridge Philosophical Society , 1979 .

[39]  Haijun Zhou,et al.  Message passing for vertex covers , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[40]  M. Mézard,et al.  Glassy phases in random heteropolymers with correlated sequences. , 2004, The Journal of chemical physics.

[41]  Florent Krzakala,et al.  Threshold values, stability analysis and high-q asymptotics for the coloring problem on random graphs , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[42]  Florent Krzakala,et al.  Hiding Quiet Solutions in Random Constraint Satisfaction Problems , 2009, Physical review letters.

[43]  Haijun Zhou,et al.  Stability analysis on the finite-temperature replica-symmetric and first-step replica-symmetry-broken cavity solutions of the random vertex cover problem. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[44]  B. Bollobás,et al.  Cliques in random graphs , 1976, Mathematical Proceedings of the Cambridge Philosophical Society.

[45]  Olivier Rivoire Phases vitreuses, optimisation et grandes déviations , 2005 .

[46]  O. Bagasra,et al.  Proceedings of the National Academy of Sciences , 1914, Science.

[47]  Thierry Mora Géométrie et inférence dans l'optimisation et en théorie de l'information , 2007 .

[48]  Yong Chen,et al.  Frequency and phase synchronization of two coupled neurons with channel noise , 2006, q-bio/0611064.

[49]  G. Grimmett,et al.  On colouring random graphs , 1975 .

[50]  Andrea Montanari,et al.  Gibbs states and the set of solutions of random constraint satisfaction problems , 2006, Proceedings of the National Academy of Sciences.

[51]  Alexander K. Hartmann,et al.  The number of guards needed by a museum: A phase transition in vertex covering of random graphs , 2000, Physical review letters.

[52]  Colin McDiarmid,et al.  Topics in Chromatic Graph Theory: Colouring random graphs , 2015 .