Ensemble multisensor data using state-of-the-art classification methods

Detection and identification from sensing image is a common task for many applications. In order to improve the performance of detection and identification the use of multiple classifier combination is demonstrated and evaluated in the paper using two industrial image datasets. Experiments show that multiple classifier combination can improve the performance of image classification and image detection and identification with boosting and bagging achieve higher accuracy rates. Accordingly, good performance is consistently derived from static parallel systems.

[1]  Ludmila I. Kuncheva,et al.  Switching between selection and fusion in combining classifiers: an experiment , 2002, IEEE Trans. Syst. Man Cybern. Part B.

[2]  R. Polikar,et al.  Multiple classifier systems for multisensor data fusion , 2006, Proceedings of the 2006 IEEE Sensors Applications Symposium, 2006..

[3]  Geoffrey E. Hinton,et al.  Learning internal representations by error propagation , 1986 .

[4]  Igor Kononenko,et al.  Semi-Naive Bayesian Classifier , 1991, EWSL.

[5]  David A. Landgrebe,et al.  A survey of decision tree classifier methodology , 1991, IEEE Trans. Syst. Man Cybern..

[6]  Yoshua Bengio,et al.  Pattern Recognition and Neural Networks , 1995 .

[7]  อนิรุธ สืบสิงห์,et al.  Data Mining Practical Machine Learning Tools and Techniques , 2014 .

[8]  Thomas G. Dietterich An Experimental Comparison of Three Methods for Constructing Ensembles of Decision Trees: Bagging, Boosting, and Randomization , 2000, Machine Learning.

[9]  J. Ross Quinlan,et al.  C4.5: Programs for Machine Learning , 1992 .

[10]  Leo Breiman,et al.  Bagging Predictors , 1996, Machine Learning.

[11]  Bhekisipho Twala,et al.  Multiple classifier application to credit risk assessment , 2010, Expert Syst. Appl..

[12]  David H. Wolpert,et al.  Stacked generalization , 1992, Neural Networks.

[13]  Yoav Freund,et al.  Boosting the margin: A new explanation for the effectiveness of voting methods , 1997, ICML.

[14]  Ian T. Jolliffe,et al.  Principal Component Analysis , 2002, International Encyclopedia of Statistical Science.

[15]  David W. Aha,et al.  Instance-Based Learning Algorithms , 1991, Machine Learning.

[16]  Jiri Matas,et al.  On Combining Classifiers , 1998, IEEE Trans. Pattern Anal. Mach. Intell..

[17]  Steven Finlay,et al.  Multiple classifier architectures and their application to credit risk assessment , 2011, Eur. J. Oper. Res..

[18]  Yoav Freund,et al.  A decision-theoretic generalization of on-line learning and an application to boosting , 1995, EuroCOLT.

[19]  David W. Hosmer,et al.  Applied Logistic Regression , 1991 .

[20]  Peter A. Beling,et al.  A study in the combination of two consumer credit scores , 2001, J. Oper. Res. Soc..