Generating mobile fluidic traps for selective three-dimensional transport of microobjects

We demonstrate noncontact transport of microscale objects in liquid environments using untethered, magnetic microrobots. The flow and vortices generated by the rotating microrobot are efficient for selective and gentle trapping, stable transport, and targeted delivery of microscale cargo. The motion of the microrobots can be precisely controlled even at very low frequencies using an advanced magnetic control signal. The design and control methodology presented here can be followed to develop microrobots utilizing the generated fluid flows and performing a variety of biomedical manipulation tasks.

[1]  Aydogan Ozcan,et al.  High-throughput lensfree 3D tracking of human sperms reveals rare statistics of helical trajectories , 2012, Proceedings of the National Academy of Sciences.

[2]  Metin Sitti,et al.  Two-Dimensional Contact and Noncontact Micromanipulation in Liquid Using an Untethered Mobile Magnetic Microrobot , 2009, IEEE Transactions on Robotics.

[3]  Li Zhang,et al.  Selective trapping and manipulation of microscale objects using mobile microvortices. , 2012, Nano letters.

[4]  Juho Pokki,et al.  Cooperative manipulation and transport of microobjects using multiple helical microcarriers , 2014 .

[5]  Angelo S. Mao,et al.  An Integrated Microrobotic Platform for On‐Demand, Targeted Therapeutic Interventions , 2014, Advanced materials.

[6]  David H Gracias,et al.  Tetherless thermobiochemically actuated microgrippers , 2009, Proceedings of the National Academy of Sciences.

[7]  Hsi-Wen Tung,et al.  Noncontact manipulation using a transversely magnetized rolling robot , 2013 .

[8]  George J. Pappas,et al.  Single Cell Manipulation using Ferromagnetic Composite Microtransporters , 2010 .

[9]  Salvador Pané,et al.  Hybrid helical magnetic microrobots obtained by 3D template-assisted electrodeposition. , 2014, Small.

[10]  Xiaomiao Feng,et al.  Bioinspired helical microswimmers based on vascular plants. , 2014, Nano letters.

[11]  Vijay Kumar,et al.  Automated biomanipulation of single cells using magnetic microrobots , 2013, Int. J. Robotics Res..

[12]  Taisuke Masuda,et al.  On-chip magnetically actuated robot with ultrasonic vibration for single cell manipulations. , 2011, Lab on a chip.

[13]  I. Lundström,et al.  Microrobots for micrometer-size objects in aqueous media: potential tools for single-cell manipulation. , 2000, Science.

[14]  Dominic R. Frutiger,et al.  Small, Fast, and Under Control: Wireless Resonant Magnetic Micro-agents , 2010, Int. J. Robotics Res..

[15]  Li Zhang,et al.  Artificial bacterial flagella for micromanipulation. , 2010, Lab on a chip.

[16]  David H. Gracias,et al.  Toward a miniaturized mechanical surgeon , 2009 .

[17]  Metin Sitti,et al.  Dynamic trapping and two-dimensional transport of swimming microorganisms using a rotating magnetic microrobot. , 2014, Lab on a chip.

[18]  E. Fullerton,et al.  Cargo-towing fuel-free magnetic nanoswimmers for targeted drug delivery. , 2012, Small.

[19]  Wei Gao,et al.  Nano/Microscale motors: biomedical opportunities and challenges. , 2012, ACS nano.

[20]  Ioannis K. Kaliakatsos,et al.  Microrobots for minimally invasive medicine. , 2010, Annual review of biomedical engineering.

[21]  Jake J. Abbott,et al.  How Should Microrobots Swim? , 2009 .

[22]  P. Fischer,et al.  Controlled propulsion of artificial magnetic nanostructured propellers. , 2009, Nano letters.

[23]  Li Zhang,et al.  Bio-inspired magnetic swimming microrobots for biomedical applications. , 2013, Nanoscale.

[24]  Krzysztof K. Krawczyk,et al.  Magnetic Helical Micromachines: Fabrication, Controlled Swimming, and Cargo Transport , 2012, Advanced materials.

[25]  Xiaomiao Feng,et al.  Template electrosynthesis of tailored-made helical nanoswimmers. , 2014, Nanoscale.