Recommendation of soil fertilization with copper and zinc for soybean crops grown in Petric Plinthosol

ABSTRACT: Cultivation of soybean and off-season corn is advancing in areas under restricted edaphoclimatic conditions, such as petric plinthosols, which have significant proportions of gravel and are deficiency in micro-nutrients such as copper (Cu) and zinc (Zn). The effects of Cu and Zn concentrations on soybean nutrition cultivated in petric plinthosol are unclear, and it is unknown whether the levels considered adequate for other soils are sufficient for gravely soils, or even if higher Cu and Zn rates can cause a toxic effect in soybean. The objective was to compare the response of soybean grown in petric plinthosol and ferralsol to Cu and Zn doses for identifying the changes induced by gravel soils and to evaluate the residual effect on off-season corn grown in ferralsol. Four experiments were carried out with Cu and Zn doses applied to soil with the soybean crop in ferralsol and plinthosol. The leaf tissues of soybean crops in the two soils showed the same rate of increase in Zn concentrations, for each kg·ha-1 of Zn applied, the increase in Zn was 0.7 mg·kg-1, suggesting no difference in the effect of Zn fertilization between soils with and without gravel. The dosages of Zn and Cu Oxysulfate applied to soil did not cause residual effects in the off-season corn. The highest doses of Cu and Zn did not have any toxic effects on the plants. The main criteria for interpreting Cu and Zn in soil analysis are thus also applicable to soybean crops grown in petric plinthosol.

[1]  M. S. Cravo,et al.  Interpretação dos resultados da análise do solo. , 2020 .

[2]  I. Talha,et al.  Evaluation of available micro nutrients status of sandy loam soils of Gujba, Yobe State, Nigeria , 2018, Journal of Agricultural Science and Practice.

[3]  R. F. Novais,et al.  Influência da saturação por bases do solo sobre a disponibilidade e absorção de zinco , 2018, Cultura Agronômica: Revista de Ciências Agronômicas.

[4]  G. G. Santos,et al.  Reversibility of the Hardening Process of Plinthite and Petroplinthite in Soils of the Araguaia River Floodplain under Different Treatments , 2018, Revista Brasileira de Ciência do Solo.

[5]  Rubens Ribeiro da Silva,et al.  Diagnóstico da variabilidade espacial e manejo da fertilidade do solo no Cerrado , 2017 .

[6]  Ute Krämer,et al.  Interactions Between Copper Homeostasis and Metabolism in Plants , 2017 .

[7]  L. A. D. Aquino,et al.  Índices diagnósticos para interpretação de análise foliar do milho , 2014 .

[8]  C. Rosolem,et al.  Potassium Leaching as Affected by Soil Texture and Residual Fertilization in Tropical Soils , 2010 .

[9]  L. Chaves,et al.  Adsorção de cobre em amostras de Plintossolo do Estado do Piauí, com diferentes características , 2009 .

[10]  M. Rajaiea,et al.  Effect of zinc and boron interaction on growth and mineral composition of lemon seedlings in a calcareous soil , 2009 .

[11]  M. Rajaei,et al.  Combined effect of Zinc and Boron on yield and nutrients accumulation in corn , 2009 .

[12]  M. Bačkor,et al.  Oxidative status of Matricaria chamomilla plants related to cadmium and copper uptake , 2008, Ecotoxicology.

[13]  Itamar Rosa Teixeira,et al.  Fontes e doses de zinco no feijoeiro cultivado em diferentes épocas de semeadura , 2008 .

[14]  M. Maftoun,et al.  Effect of Zinc × Boron Interaction on Plant Growth and Tissue Nutrient Concentration of Corn , 2007 .

[15]  Deutsche Ausgabe World Reference Base for Soil Resources 2006 , 2007 .

[16]  Y. Kalra,et al.  Residual Effect of Copper and Zinc from Fertilizers on Plant Concentration, Phytotoxicity, and Crop Yield Response , 2006 .

[17]  L. H. C. Anjos,et al.  Sistema Brasileiro de Classificação de Solos. , 2006 .

[18]  R. T. Tanaka,et al.  Exigência a boro em cultivares de soja , 2001 .

[19]  N. Fageria,et al.  ADEQUATE AND TOXIC LEVELS OF COPPER AND MANGANESE IN UPLAND RICE, COMMON BEAN, CORN, SOYBEAN, AND WHEAT GROWN ON AN OXISOL , 2001 .

[20]  N. Fageria Adequate and toxic levels of zinc for rice, common bean, corn, soybean and wheat production in cerrado soil , 2000 .

[21]  A. Alva,et al.  Soil pH affects copper fractionation and phytotoxicity. , 2000 .

[22]  N. K. Fageria Níveis adequados e tóxicos de zinco na produção de arroz, feijão, milho, soja e trigo em solo de cerrado , 2000 .

[23]  P. Ernani,et al.  Increase of grain and green matter of corn by liming , 1998 .

[24]  I. Cakmak,et al.  Effect of different zinc application methods on grain yield and zinc concentration in wheat cultivars grown on zinc‐deficient calcareous soils , 1997 .

[25]  J. A. Rosen,et al.  Zinc, Iron, and Chlorophyll Metabolism in Zinc-toxic Corn. , 1977, Plant physiology.

[26]  W. Fehr,et al.  Stages of soybean development , 1977 .

[27]  N. M. Safaya Phosphorus-zinc Interaction in Relation to Absorption Rates of Phosphorus, Zinc, Copper, Manganese, and Iron in Corn1 , 1976 .

[28]  R. Newman,et al.  Influence of Soil pH on the Availability of Added Boron1 , 1976 .

[29]  G. M. Paulsen,et al.  Phosphorus‐Iron and Phosphorus‐Zinc Relationships in Corn (Zea mays L.) Seedlings as Affected by Mineral Nutrition1 , 1971 .

[30]  J. Hanway How a corn plant develops , 1966 .